A summation formula for triples of quadratic spaces

@article{Getz2017ASF,
  title={A summation formula for triples of quadratic spaces},
  author={Jayce R. Getz and B. Liu},
  journal={arXiv: Number Theory},
  year={2017}
}
Let $V_1,V_2,V_3$ be a triple of even dimensional vector spaces over a number field $F$ equipped with nondegenerate quadratic forms $\mathcal{Q}_1,\mathcal{Q}_2,\mathcal{Q}_3$, respectively. Let \begin{align*} Y \subset \prod_{i=1}V_i \end{align*} be the closed subscheme consisting of $(v_1,v_2,v_3)$ on which $\mathcal{Q}_1(v_1)=\mathcal{Q}_2(v_2)=\mathcal{Q}_3(v_3)$. Motivated by conjectures of Braverman and Kazhdan and related work of Lafforgue, Ng\^o, and Sakellaridis we prove an analogue of… Expand
3 Citations
On triple product L-functions.
  • 1
  • Highly Influenced
  • PDF

References

SHOWING 1-10 OF 77 REFERENCES
Towards Generalized Prehomogeneous Zeta Integrals
  • 5
  • Highly Influential
  • PDF
γ-Functions of Representations and Lifting
  • 39
  • PDF
Weil and Grothendieck approaches to adelic points
  • 47
  • PDF
Zeta integrals, Schwartz spaces and local functional equations
  • 10
  • Highly Influential
  • PDF
...
1
2
3
4
5
...