A small time solutions for the Korteweg-de Vries equation

@article{Kutluay2000AST,
  title={A small time solutions for the Korteweg-de Vries equation},
  author={Selçuk Kutluay and A. Refik Bahadir and A. {\"O}zdes},
  journal={Applied Mathematics and Computation},
  year={2000},
  volume={107},
  pages={203-210}
}
In this paper a heat balance integral (HBI) method is applied to the one-dimensional non-linear Korteweg±de Vries (KdV) equation prescribed by appropriate homogenous boundary conditions and a set of initial conditions to obtain its approximate analytical solutions at small times. It is shown that the HBI solutions obtained by the method may be used e€ectively at small times when the exact solution of the KdV equation is not known. Ó 2000 Elsevier Science Inc. All rights reserved. 
2 Citations
24 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 24 references

On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves

  • D. J. Korteweg, G. de Vries
  • Philos. Mag
  • 1985
Highly Influential
3 Excerpts

Galerkin methods for some model equations for nonlinear dispersive waves

  • M. E. Alexander, J.L.L. Morris
  • J. Comp. Phys
  • 1979
Highly Influential
5 Excerpts

A hopscotch method for the Korteweg-de Vries equation

  • I. S. Greig, J.L.L. Morris
  • J. Comp. Phys
  • 1976
Highly Influential
4 Excerpts

Sßahin, A heat balance integral solution to Burger's equation in one space dimension

  • A.  Ozdes ß, S. Kutluay, A.A.R. Bahadir
  • Balkan Phys. Lett
  • 1996
1 Excerpt

A numerical solutions for the Korteweg-de Vries equation using Galerkins method with Hermite polynomial shape functions

  • L.R.T. Gardner, A.H.A. Ali
  • in: Proceedings of the International Conference…
  • 1988
1 Excerpt

An ecient ®nite-di€erence scheme for multidimensional Stefan problems

  • A. S. Wood
  • Int. J. Numer. Meth. Eng
  • 1986
1 Excerpt

Ablowitz, Analytic and numerical aspects of certain non-linear evolution equations III. Numerical KdV Equation

  • M.J.T.R. Taha
  • J. Comp. Phys
  • 1984
1 Excerpt

Spline Petrov±Galerkin methods for the numerical solution of the Kortewegde Vries equation

  • S. W. Schoomie
  • IMA J. Num. Anal
  • 1982
2 Excerpts

± Galerkin methods for the numerical solution of the Korteweg - de Vries equation

  • M. J. Ablowitz Taha
  • IMA J . Num . Anal .
  • 1982

Galerkin methods for non linear dispersive waves

  • J.M.S. Serna, I. Christie, Petrov
  • J. Comp. Phys
  • 1981
2 Excerpts

Similar Papers

Loading similar papers…