• Corpus ID: 250279783

A short proof of the characterisation of convex order using the 2-Wasserstein distance

@inproceedings{Acciaio2022ASP,
  title={A short proof of the characterisation of convex order using the 2-Wasserstein distance},
  author={Beatrice Acciaio and Gudmund Pammer},
  year={2022}
}
. We provide a short proof of the intriguing characterisation of the convex order given by Wiesel and Zhang [5]. 

References

SHOWING 1-6 OF 6 REFERENCES

A characterisation of convex order using the 2-Wasserstein distance

. We give a new characterisation of convex order using the 2-Wasserstein distance W 2 : we show that two probability measures µ and ν on R d with finite second moments are in convex order (i.e. µ

Compactness in Adapted Weak Topologies

Over the years a number of topologies for the set of laws of stochastic processes have been proposed. Building on the weak topology they all aim to capture more accurately the temporal structure of

Optimal Transport: Old and New

Couplings and changes of variables.- Three examples of coupling techniques.- The founding fathers of optimal transport.- Qualitative description of optimal transport.- Basic properties.- Cyclical

Squared quadratic Wasserstein distance: optimal couplings and Lions differentiability

In this paper, we remark that any optimal coupling for the quadratic Wasserstein distance W22(μ,ν) between two probability measures μ and ν with finite second order moments on ℝd is the composition

On the existence of probability measures with given marginals

© Annales de l’institut Fourier, 1978, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions

Optimal Transport. Old and New, volume 338 of Grundlehren der mathematischen Wissenschaften

  • 2009