A sharp bilinear restriction estimate for paraboloids
@article{Tao2002ASB, title={A sharp bilinear restriction estimate for paraboloids}, author={Terence Tao}, journal={Geometric \& Functional Analysis GAFA}, year={2002}, volume={13}, pages={1359-1384} }
AbstractRecently Wolff [W3] obtained a sharp L2 bilinear restriction theorem
for bounded subsets of the cone in general dimension. Here we adapt
the argument of Wolff to also handle subsets of “elliptic surfaces” such
as paraboloids. Except for an endpoint, this answers a conjecture
of Machedon and Klainerman, and also improves upon the known
restriction theory for the paraboloid and sphere.
254 Citations
Bilinear restriction estimates for surfaces with curvatures of different signs
- Mathematics
- 2005
Recently, the sharp L 2 -bilinear (adjoint) restriction estimates for the cone and the paraboloid were established by Wolff and Tao, respectively. Their results rely on the fact that for the cone and…
An endpoint estimate of the bilinear paraboloid restriction operator
- Mathematics
- 2021
In Fourier restriction problems, a cone and a paraboloid are model surfaces. The sharp bilinear cone restriction estimate was first shown by Wolff, and later the endpoint was obtained by Tao. For a…
Restriction theorems for a surface with negative curvature
- Mathematics
- 2005
Abstract.We prove a bilinear restriction theorem for a surface of negative curvature. This is the analogue of the results of T. Wolff [19] and T. Tao [14], [15] for cones and paraboloids. As a…
Global restriction estimates for elliptic hyperboloids
- MathematicsMathematische Zeitschrift
- 2022
We prove global Fourier restriction estimates for elliptic, or two-sheeted, hyperboloids of arbitrary dimension $d \geq 2$, extending recent joint work with Oliveira e Silva and Stovall. Our results…
Bilinear restriction estimates for surfaces of codimension bigger than 1
- Mathematics
- 2017
In connection with the restriction problem in $\mathbb R^n$ for hypersurfaces including the sphere and paraboloid, the bilinear (adjoint) restriction estimates have been extensively studied. However,…
A trilinear restriction estimate with sharp dependence on transversality
- Mathematics
- 2016
Abstract:We improve the Bennett-Carbery-Tao trilinear restriction estimate for subsets of the paraboloid in three dimensions, giving the sharp bound with respect to the transversality. The main…
Extremizers for Adjoint Restriction to a Pair of Reflected Paraboloids
- Mathematics
- 2021
We consider the adjoint restriction inequality associated to the hypersurface {(τ, ξ) : τ = ±|ξ|, ξ ∈ R} at the Stein-Tomas exponent. Extremizers exist in all dimensions and extremizing sequences are…
Linear and bilinear restriction to certain rotationally symmetric hypersurfaces
- Mathematics
- 2016
Conditional on Fourier restriction estimates for elliptic hypersurfaces, we prove optimal restriction estimates for polynomial hypersurfaces of revolution for which the defining polynomial has…
Optimal bilinear restriction estimates for general hypersurfaces and the role of the shape operator
- Mathematics
- 2016
It is known that under some transversality and curvature assumptions on the hypersurfaces involved, the bilinear restriction estimate holds true with better exponents than what would trivially follow…
On the multilinear restriction and Kakeya conjectures
- Mathematics
- 2005
We prove d-linear analogues of the classical restriction and Kakeya conjectures in Rd. Our approach involves obtaining monotonicity formulae pertaining to a certain evolution of families of…
References
SHOWING 1-10 OF 42 REFERENCES
Endpoint bilinear restriction theorems for the cone, and some sharp null form estimates
- Mathematics
- 1999
Abstract. Recently Wolff [25] obtained a nearly sharp
$L^2$ bilinear restriction theorem for bounded subsets of the cone in general dimension. We obtain the endpoint of Wolff's estimate and…
A bilinear approach to cone multipliers I. Restriction estimates
- Mathematics
- 2000
Abstract. In this paper, we continue the study of three-dimensional bilinear restriction and Kakeya estimates which was initiated in [TVV]. In particular, we give new linear and bilinear restriction…
A bilinear approach to cone multipliers II. Applications
- Mathematics
- 2000
Abstract. This paper is a continuation of [TV], in which new bilinear estimates for surfaces in
$ {\bold R}^3 $ were proven. We give a concrete improvement to the square function estimate of…
Restriction implies Bochner-Riesz for paraboloids
- Mathematics
- 1992
Let Σ ⊆ ℝ n be a (compact) hypersurface with non-vanishing Gaussian curvature, with suitable parameterizations, also called Σ: U → ℝ n ( U open patches in ℝ n−1 ). The restriction problem for Σ is…
A Sharp Bilinear Cone Restriction Estimate
- Mathematics
- 2001
The purpose of this paper is to prove an essentially sharp L^2 Fourier restriction estimate for light cones, of the type which is called bilinear in the recent literature.
Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite L2 norm
- Mathematics
- 2001
A sharp bilinear cone restriction estimate
- Mathematics
- 2001
The purpose of this paper is to prove an essentially sharp L2 Fourier restriction estimate for light cones, of the type which is called bilinear in the recent literature. Fix d ≥ 3, denote variables…
GLOBAL WELLPOSEDNESS FOR 1 D NON-LINEAR SCHRÖDINGER EQUATION FOR DATA WITH AN INFINITE L 2 NORM
- Mathematics
- 2001
– We prove global wellposedness for the one-dimensional cubic non-linear Schrödinger equation in a space of distributions which is invariant under Galilean transformations and includes L2. This space…
A bilinear approach to the restriction and Kakeya conjectures
- Mathematics
- 1998
The purpose of this paper is to investigate bilinear variants of the restriction and Kakeya conjectures, to relate them to the standard formulations of these conjectures, and to give applications of…
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations
- Mathematics
- 1977
A simple duality argument shows these two problems are completely equivalent ifp and q are dual indices, (]/) + (I/q) ]. ]nteresl in Problem A when S is a sphere stems from the work of C. Fefferman…