A self-adjoint decomposition of radial momentum implies that Dirac's introduction of the operator is insightful
@article{Liu2014ASD, title={A self-adjoint decomposition of radial momentum implies that Dirac's introduction of the operator is insightful}, author={Q. H. Liu and S. F. Xiao}, journal={arXiv: Quantum Physics}, year={2014} }
With acceptance of the Dirac's observation that the \textit{canonical quantization entails using Cartesian coordinates, }we examine the\textit{\ }% operator $\mathbf{e}_{r}P_{r}$ rather than $P_{r}$ itself and demonstrate that there is a decomposition of $\mathbf{e}_{r}P_{r}$ into two self-adjoint but non-commutative parts, in which one is the total momentum and another is the transverse one. This study renders the operator $P_{r}$ indirectly measurable and physically meaningful.
References
SHOWING 1-10 OF 24 REFERENCES
Geometric momentum: The proper momentum for a free particle on a two-dimensional sphere
- Physics
- 2011
In Dirac's canonical quantization theory on systems with second-class constraints, the commutators between the position, momentum, and Hamiltonian form a set of algebraic relations that are…
The non-self-adjointness of the radial momentum operator in n dimensions
- Mathematics
- 2000
The non self-adjointness of the radial momentum operator has been noted before by several authors, but the various proofs are incorrect. We give a rigorous proof that the $n$-dimensional radial…
Geometric momentum in the Monge parametrization of two dimensional sphere
- Physics
- 2012
A two dimensional surface can be considered as three dimensional shell whose thickness is negligible in comparison with the dimension of the whole system. The quantum mechanics on surface can be…
Self-adjointness of momentum operators in generalized coordinates
- Mathematics
- 1984
The aim of this paper is to contribute to the clarification of concepts usually found in books on quantum mechanics, aided by knowledge from the field of the theory of operators in Hilbert space.…
Geometric momentum for a particle constrained on a curved hypersurface
- Mathematics
- 2013
The canonical quantization is a procedure for quantizing a classical theory while preserving the formal algebraic structure among observables in the classical theory to the extent possible. For a…
ON RELATION BETWEEN GEOMETRIC MOMENTUM AND ANNIHILATION OPERATORS ON A TWO-DIMENSIONAL SPHERE
- Physics
- 2013
With a recently introduced geometric momentum that depends on the extrinsic curvature and offers a proper description of momentum on two-dimensional sphere, we show that the annihilation operators…
Can Dirac quantization of constrained systems be fulfilled within the intrinsic geometry
- Physics
- 2014
Generalized Momentum Operators in Quantum Mechanics
- Physics
- 1963
The usual form P0 for the quantum‐mechanical operator P conjugate to a generalized coordinate q1 is, in atomic units, P0=−ig−12 ∂/∂q1(g12), where g is the Jacobian of the transformation from…
Geometric Momentum and a Probe of Embedding Effects
- Physics
- 2013
As a manifold is embedded into a higher dimensional Euclidean space, quantum mechanics gives various embedding quantities. In the present study, two embedding quantities for a two-dimensional curved…