A random polynomial-time algorithm for approximating the volume of convex bodies

@article{Dyer1989ARP,
  title={A random polynomial-time algorithm for approximating the volume of convex bodies},
  author={M. Dyer and A. Frieze and R. Kannan},
  journal={J. ACM},
  year={1989},
  volume={38},
  pages={1-17}
}
  • M. Dyer, A. Frieze, R. Kannan
  • Published 1989
  • Mathematics, Computer Science
  • J. ACM
  • A randomized polynomial-time algorithm for approximating the volume of a convex body <italic>K</italic> in <italic>n</italic>-dimensional Euclidean space is presented. The proof of correctness of the algorithm relies on recent theory of rapidly mixing Markov chains and isoperimetric inequalities to show that a certain random walk can be used to sample nearly uniformly from within <italic>K</italic>. 
    471 Citations

    Paper Mentions

    A Random Polynomial Time Algorithm for Well-rounding Convex Bodies
    • 3
    • PDF
    A Polynomial Number of Random Points Does Not Determine the Volume of a Convex Body
    • Ronen Eldan
    • Mathematics, Computer Science
    • Discret. Comput. Geom.
    • 2011
    • 8
    • PDF
    Random Walks on Polytopes and an Affine Interior Point Method for Linear Programming
    • 31
    • PDF
    Random Walks in a Convex Body and an Improved Volume Algorithm
    • 400
    • PDF
    Approximating the Volume of General Pfaffian Bodies
    • 12
    A Cubic Algorithm for Computing Gaussian Volume
    • 28
    • PDF
    Efficient Random-Walk Methods for Approximating Polytope Volume
    • 26
    • PDF

    References

    Computmg the volume n ddlicult
    • 1986