A q-Analogue of Faulhaber's Formula for Sums of Powers

@article{Guo2005AQO,
  title={A q-Analogue of Faulhaber's Formula for Sums of Powers},
  author={Victor J. W. Guo and Jiang Zeng},
  journal={Electron. J. Comb.},
  year={2005},
  volume={11}
}
  • Victor J. W. Guo, Jiang Zeng
  • Published 2005
  • Mathematics, Computer Science
  • Electron. J. Comb.
  • Let $$ S_{m,n}(q):=\sum_{k=1}^{n}\frac{1-q^{2k}}{1-q^2} \left(\frac{1-q^k}{1-q}\right)^{m-1}q^{\frac{m+1}{2}(n-k)}. $$ Generalizing the formulas of Warnaar and Schlosser, we prove that there exist polynomials $P_{m,k}(q)\in{\Bbb Z}[q]$ such that $$ S_{2m+1,n}(q) =\sum_{k=0}^{m}(-1)^kP_{m,k}(q) \frac{(1-q^n)^{m+1-k}(1-q^{n+1})^{m+1-k}q^{kn}} {(1-q^2)(1-q)^{2m-3k}\prod_{i=0}^{k}(1-q^{m+1-i})}, $$ and solve a problem raised by Schlosser. We also show that there is a similar formula for the… CONTINUE READING

    Tables and Topics from this paper.

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 24 REFERENCES
    Johann Faulhaber and sums of powers
    • 141
    • PDF
    q-Analogues of the Sums of Consecutive Integers, Squares, Cubes, Quarts and Quints
    • 25
    • Highly Influential
    Colouring Planar Mixed Hypergraphs
    • 29
    • PDF
    A counter-example to Voloshin's hypergraph co-perfectness conjecture
    • D. Král
    • Mathematics, Computer Science
    • 2003
    • 14
    • PDF
    The mixed hypergraphs
    • 90
    • PDF
    On the q-Analogue of the Sum of Cubes
    • 15
    • PDF
    A Combinatorial Proof of the Sum of q-Cubes
    • 19
    • PDF
    Uniquely colorable mixed hypergraphs
    • 22
    • PDF
    Upper chromatic number of Steiner triple and quadruple systems
    • 65
    • PDF