A probabilistic algorithm for k-SAT and constraint satisfaction problems
@article{Schoning1999APA,
title={A probabilistic algorithm for k-SAT and constraint satisfaction problems},
author={Torsten Schoning},
journal={40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)},
year={1999},
pages={410-414}
}We present a simple probabilistic algorithm for solving k-SAT and more generally, for solving constraint satisfaction problems (CSP). The algorithm follows a simple local search paradigm (S. Minton et al., 1992): randomly guess an initial assignment and then, guided by those clauses (constraints) that are not satisfied, by successively choosing a random literal from such a clause and flipping the corresponding bit, try to find a satisfying assignment. If no satisfying assignment is found after…
271 Citations
Measurement-driven quantum computing: Performance of a 3-SAT solver
- Computer Science, Physics
- 2017
In exact numerical simulations of small systems up to 34 qubits the authors' approach competes favourably with a high-performing classical 3-SAT solver, which itself outperforms a brute-force application of Grover's search.
Improving PPSZ for 3-SAT using Critical Variables
- BusinessSTACS
- 2011
A simple case distinction on the fraction of critical variables of a CNF formula is used to improve the running time for 3-SAT fromO (1.32216 n ) by Rolf [10] toO(1.32153 n ).
PPZ For More Than Two Truth Values - An Algorithm for Constraint Satisfaction Problems
- Computer Science, MathematicsArXiv
- 2010
To analyze the so-called ppz algorithm for (d,k)-CSP problems for general values of d and k, and to prove a correlation inequality for submodular functions, the algorithm is analyzed.
Detecting Motifs in a Large Data Set: Applying Probabilistic Insights to Motif Finding
- Computer ScienceBICoB
- 2009
The results show that detecting motifs in data sets increases in ease and efficiency when the size of set of sequence increases, a surprising and counter-intuitive fact that has significant impact on this deeply-investigated area.
Improved upper bounds for 3-SAT
- Computer ScienceSODA '04
- 2004
For small k’s, especially for k = 3, there exists a lot of algorithms which run significantly faster than the trivial 2 bound, the following list summarizes those algorithms where a constant c means that the algorithm runs in time O(c).
Algorithms for Sat and Upper Bounds on Their Complexity
- Computer Science, MathematicsElectron. Colloquium Comput. Complex.
- 2001
We survey recent algorithms for the propositional satisfiability problem. In particular, we consider algorithms having the best current worst-case upper bounds on their complexity. We also discuss…
Bridging between 0/1 and linear programming via random walks
- MathematicsElectron. Colloquium Comput. Complex.
- 2019
This work gives a natural algorithmic bridging between these extremes of 0-1 and linear programming by giving a random-walk based algorithm with runtime OE((2−measure(E)npoly(n,m))) that finds a solution in En to any n-variable linear program with m constraints that is feasible over {0,1}n.
WALCOM: Algorithms and Computation
- Computer ScienceLecture Notes in Computer Science
- 2018
Results about the difficulty and approximability of a single-facility location for general networks and polynomial time algorithms for k-facilities location problems in path and tree networks and multi-commodity dynamic flow problems are shown.
Relaxed Random Search for Solving K-Satisfiability and its Information Theoretic Interpretation
- Computer Science
- 2017
It is shown how the probability of literal flipping process can change the complexity of algorithm substantially and an information theoretic interpretation of this reduction in time complexity will be argued.
References
SHOWING 1-10 OF 14 REFERENCES
Solving 3-Satisfiability in Less Then 1, 579n Steps
- MathematicsCSL
- 1992
This paper describes and analyse an improved algorithm for solving the 3-Satisfiability problem and shows that this algorithm solves the Satisfiability problem for formulas with at most three literals per clause in time less than O(1,579n).
Satisfiability - Algorithms and Logic
- Computer ScienceMFCS
- 1998
Some results in proof complexity that can be used to derive lower bounds on classes of algorithms for satisfiability of k-CNF formulas are mentioned.
Deciding 3-Colourability in Less Than O(1.415^n) Steps
- MathematicsWG
- 1993
An improved algorithm for deciding the 3-Colourability problem is described and analyzed and it is shown that this algorithm tests a graph for 3- Colourability, i.e. an assignment of three colours to the vertices of G such that two adjacent vertices obtain different colours, in less than O(1.415n) steps.
Search methods for artificial intelligence
- Business
- 1992
Surveys a variety of search methods for problem-solving in terms of the sorts of problems that arise in the development of artificial intelligence. The theoretical and practical implications of a…
Algorithms and Theory of Computation Handbook
- Computer ScienceChapman & Hall/CRC Applied Algorithms and Data Structures series
- 1999
This edition now covers external memory, parameterized, self-stabilizing, and pricing algorithms as well as the theories of algorithmic coding, privacy and anonymity, databases, computational games, and communication networks.
On selecting a satisfying truth assignment
- Mathematics[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science
- 1991
The complexity of certain natural generalizations of satisfiability, in which one of the possibly exponentially many satisfying truth assignments must be selected, is studied and yields a new and very natural polynomial-time randomized algorithm for 2SAT.
Satisfiability Coding Lemma
- Computer ScienceProceedings 38th Annual Symposium on Foundations of Computer Science
- 1997
This basic lemma shows how to encode satisfying solutions of a /spl kappa/-CNF succinctly as well as an upper and lower bound on the size of depth 3 circuits of AND and OR gates computing the parity function.
3-coloring in time 0(1.3446/sup n/): a no-MIS algorithm
- Computer Science, MathematicsProceedings of IEEE 36th Annual Foundations of Computer Science
- 1995
This work gives a fast algorithm for (3,2)-SSS and uses it to improve the time bounds for solving the other problems listed above.