A pr 2 00 5 Discrete phase space based on finite fields

@inproceedings{Gibbons2004AP2,
title={A pr 2 00 5 Discrete phase space based on finite fields},
author={Kathleen S. Gibbons and Matthew J Hoffman and William K. Wootters},
year={2004}
}

The original Wigner function provides a way of representing in phase space the quantum states of systems with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems, one popular version being defined on a 2N × 2N discrete phase space for a system with N orthogonal states. Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that labels the axes of continuous phase space is replaced by a finite… CONTINUE READING

Negative Probabilities” in Quantum Implications: Essays in Honour of David Bohm

R. Feynman

edited by B. Hiley and D. Peat • 1987

View 4 Excerpts

Highly Influenced

Found

L. Cohen, M. Scully

Phys. 16, 295 • 1986

View 2 Excerpts

Highly Influenced

Gruppentheorie und Quantenmechanik (Hirzel

H. Weyl

Leipzig 1928), p. 209; H. Weyl, The Theory of Groups and Quantum Mechanics, translated by H. P. Robertson • 1950

View 4 Excerpts

Highly Influenced

Dev

W. K. Wootters, IBM J. Res

48, 99 • 2004

View 1 Excerpt

Proc

A. R. Calderbank, P. J. Cameron, W. M. Kantor, J. J. Seidel

London Math. Soc. 75, 436 (1997); J. Lawrence, C. Brukner, A. Zeilinger, Phys. Rev. A 65, 032320 (2002); S. Chaturvedi, Phys. Rev. A 65, 044301 • 2002

Sigact News

S. Wiesner

15, no. 1, 78 (1983); C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), pp. 175-179; H. Bechmann-Pasquinucci and A. Peres, Phys. Rev. Lett. 85, 3313 (2000); H. Bechmann-Pasquinucci • 2002

View 1 Excerpt

in Proceedings of the 42nd Annual Symposium on Foundations of Computer Science (FOCS)

H. Barnum, C. Crépeau, D. Gottesman, A. Smith, A. Tapp

pp. 449-458 • 2002

View 2 Excerpts

quant-ph/0106091; C

P. Bianucci, C. Miquel, J. P. Paz, M. Saraceno

Miquel, J. P. Paz, M. Saraceno, E. Knill, R. Laflamme, and C. Negrevergne, Nature 418, 59-62 (2002); C. Miquel, J. P. Paz, M. Saraceno, Phys. Rev. A 65, 062309 (2002); J. P. Paz, Phys. Rev. A 65, 062311 • 2002