A pr 2 00 0 On the symmetry and uniqueness of solutions of the Ginzburg-Landau equations for small domains

@inproceedings{AftalionAP2,
  title={A pr 2 00 0 On the symmetry and uniqueness of solutions of the Ginzburg-Landau equations for small domains},
  author={Amandine Aftalion and Edward Norman Dancer}
}
In this paper, we study the Ginzburg-Landau equations for a two dimensional domain which has small size. We prove that if the domain is small, then the solution has no zero, that is no vortex. More precisely, we show that the order parameter Ψ is almost constant. Additionnally, we obtain that if the domain is a disc of small radius, then any non normal solution is symmetric and unique. Then, in the case of a slab, that is a one dimensional domain, we use the same method to derive that solutions… CONTINUE READING

From This Paper

Topics from this paper.
4 Citations
11 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 11 references

Uniqueness of solutions of the Ginzburg - Landau equations for thin films

  • A. Aftalion, W. C. Troy
  • 1999

Uniqueness of symmetric vortex solutions in the Ginzburg - Landau model of superconductivity

  • S. Alama, L. Bronsard, T. Giorgi
  • J . Funct . Anal .
  • 1999

Stability of bifurcating solutions for the Ginzburg - Landau equations

  • F. Bethuel, H. Brezis, C. Bolley, B. Helffer
  • Rev . Math . Phys .
  • 1998

Les minimiseurs locaux pour l ’ équation de Ginzburg - Landau sont à symétrie radiale

  • E. Sandier, S. Serfaty
  • C . R . A . S . Ser . I
  • 1996

Symmetry and related properties via the maximum principle

  • D. Gilbarg, N. S. Trudinger
  • Comm . Math . Phys .
  • 1979

Similar Papers

Loading similar papers…