We present a two phase interior point decomposition framework for solving semidefinite (SDP) relaxations of sparse maxcut, stable set, and box constrained quadratic programs. In phase 1, we suitably modify the matrix completion scheme of Fukuda et al. [11] to preprocess an existing SDP into an equivalent SDP in the block-angular form. In phase 2, we solve the resulting block-angular SDP using a regularized interior point decomposition algorithm, in an iterative fashion between a master problem… CONTINUE READING