A p-Adic Theory of Hyperfunctions, I

@article{Morita1981APT,
  title={A p-Adic Theory of Hyperfunctions, I},
  author={Yasuo Morita},
  journal={Publications of The Research Institute for Mathematical Sciences},
  year={1981},
  volume={17},
  pages={1-24}
}
  • Y. Morita
  • Published 30 April 1981
  • Mathematics
  • Publications of The Research Institute for Mathematical Sciences
Publisher Summary This chapter presents a p-adic theory of hyperfunctions of several variables by using relative cohomologies of rigid analytic spaces. The chapter reviews the general theory of relative cohomologies of rigid analytic spaces, and discusses the relation between the usual topology of K and the Grothendieck topology of X. A lemma on the relative cohomologies on a polydisk is proven, and the duality is obtained. As for the theory of rigid analytic spaces, the terminology of Bosch… 
p-adic boundary values
We study in detail certain natural continuous representations of G = GL(n,K) in locally convex vector spaces over a locally compact, non-archimedean field K of characteristic zero. We construct
Rigid analytic spaces with overconvergent structure sheaf
We introduce a category of 'rigid spaces with overconvergent structure sheaf' which we call dagger spaces --- this is the correct category in which de Rham cohomology in rigid analysis should be
Analysis and Prbability over Infinite Extensions of a Local Field
We consider an infinite extension K of a local field of zero characteristic which is a union of an increasing sequence of finite extensions. K is equipped with an inductive limit topology; its
Rigid analytic spaces with overconvergent structure sheaf
We introduce a category of ’rigid spaces with overconvergent structure sheaf’ which we call dagger spaces — this is the correct category in which de Rham cohomology in rigid analysis should be
Analysis and Probability over Infinite Extensions of a Local Field, II: A Multiplicative Theory
Let $V$ be a projective limit, with respect to the renormalized norm mappings, of the groups of principal units corresponding to a strictly increasing sequence of finite separable totally and tamely
Rev\^etements du demi-plan de Drinfeld et correspondance de Langlands p-adique
We describe the de Rham complex of the \'etale coverings of Drinfeld's p-adic upper half-plane for GL_2(Q_p). Conjectured by Breuil and Strauch, this description gives a geometric realization of the
ON THE p -ADIC
. For any prime number p , let J p be the set of positive integers n such that p divides the numerator of the n -th harmonic number H n . An old conjecture of Eswarathasan and Levine states that J p
Duality of projective limit spaces and inductive limit spaces over a nonspherically complete nonarchimedean field
A duality theorem of projective and inductive limit spaces over a nonspherically complete valued field is obtained under a certain condition, and topologies of spaces of locally analytic functions
Equivariant vector bundles on Drinfeld’s upper half space
Let $\mathcal{X}\subset\mathbb{P}_K^d$ be Drinfeld’s upper half space over a finite extension K of ℚp. We construct for every GLd+1-equivariant vector bundle $\mathcal{F}$ on ℙdK, a
...
...

References

SHOWING 1-10 OF 17 REFERENCES
Projective and injective limits of weakly compact sequences of locally convex spaces
Silva [15] and Raikov [12] [13] studied projective and injective limits of compact sequences of locally convex spaces and revealed remarkable properties of the locally convex spaces expressed as
Théorie des distributions
II. Differentiation II.2. Examples of differentiation. The case of one variable (n = 1). II.2.3. Pseudofunctions. Hadamard finite part. We calculate the derivative of a function f(x) which is equal
Fonctions zeta p-adiques des corps de nombres abeliens réels
© Mémoires de la S. M. F., 1971, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l’accord
Arithmetic of Weil curves
w 2. Well Curves . . . . . . . . . . . . . . . . . . . . . . 4 (2.1) Deflmtions . . . . . . . . . . . . . . . . . . . . . 4 (2.2) The Winding Number . . . . . . . . . . . . . . . . 7 (2.3) The
Espaces vectoriels topologiques
Les Elements de mathematique de Nicolas Bourbaki ont pour objet une presentation rigoureuse, systematique et sans prerequis des mathematiques depuis leurs fondements. Ce livre est le cinquieme du
Eine p-adische Theorie der Zetawerte. Teil I: Einführung der p-adischen Dirichletschen L-Funktionen.
Von den übrigen Werten von L (s, ) ist vor allem noch der (wahrscheinlich transzendente) Wert L(l, ) = £«>(#) wegen seines Auftretens in der Klassenzahlformel für die über Q abelschen Zahlkörper
On generalized $p$-adic integration
© Mémoires de la S. M. F., 1974, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http:// smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord
Mesures p-adiques et éléments analytiques.
On montre que, si F est limite uniforme sur la boule unite ouverte d'une suite de fractions rationnelles sans poles de norme inferieure l, alors μρ est une mesure «densite faible et uniforme» sur Z.
Rapport sur le prolongement analytique dans les corps values complets par la méthode des éléments analytiques quasi-connexes
© Mémoires de la S. M. F., 1974, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l’accord
...
...