A numerical technique for geophysical data assimilation problems using Pontryagin’s principle and splitting-up method

@inproceedings{MARCHUK1993ANT,
  title={A numerical technique for geophysical data assimilation problems using Pontryagin’s principle and splitting-up method},
  author={G. I. MARCHUK and V. B. ZALESNY},
  year={1993}
}
Formulations of the observational data assimilation problem are given and methods for its solution that constructively use conjugate equations are described. On the basis of Pontryagin's maximum principle, the initial problem of minimizing the quadratic functional, which is the difference between the solution and observational data, reduces to the spatialtemporal problem. The solution of a maximum-principle boundary-value problem is constructed on the basis of the splitting-up method, which… CONTINUE READING

Figures from this paper.

Citations

Publications citing this paper.
SHOWING 1-10 OF 21 CITATIONS

References

Publications referenced by this paper.
SHOWING 1-10 OF 10 REFERENCES

Numerical Methods for Solving Extremal Problems

  • P. P. Vasilyev
  • Nauka, Moscow,
  • 1988
Highly Influential
4 Excerpts

Shutyaev, Adjoint Equations and Perturbation Algorithms in Nonlinear Problems

  • G. I. Marchuk, V. I. Agoshkov, V.P
  • Mathematical Physics . Dep. Numer. Math., USSR…
  • 1991
1 Excerpt

Pontryagin, The mathematical theory of optimal processes and differential games

  • L S.
  • Proc. Math. Inst., USSR Acad. Sci.y Nauka, Moscow…
  • 1985
1 Excerpt

Numerical Solution of the Problems of Atmosphere and Ocean Dynamics

  • G. I. Marchuk
  • Gidrometcoizdat, Leningrad,
  • 1974
1 Excerpt

Sur le Contrdle Optimal de Systemes Gouvemes par des Equations awe Denvees Partielles

  • J. L. Lions
  • Paris, Dunod, Gauthier- Villars,
  • 1968
1 Excerpt

The Mathematical Weory of Optimal Processes

  • L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko
  • Wiley Interscience, New York,
  • 1962
1 Excerpt