A note on quiver quantum toroidal algebra

@article{Noshita2022ANO,
  title={A note on quiver quantum toroidal algebra},
  author={Go Noshita and Akimi Watanabe},
  journal={Journal of High Energy Physics},
  year={2022}
}
Abstract Recently, Li and Yamazaki proposed a new class of infinite-dimensional algebras, quiver Yangian, which generalizes the affine Yangian $$ \mathfrak{gl} $$ gl 1. The characteristic feature of the algebra is the action on BPS states for non-compact toric Calabi-Yau threefolds, which are in one-to-one correspondence with the crystal melting models. These algebras can be bootstrapped from the action on the crystals and have various truncations.In this paper, we propose a q-deformed… 

Toroidal and elliptic quiver BPS algebras and beyond

Abstract The quiver Yangian, an infinite-dimensional algebra introduced recently in [1], is the algebra underlying BPS state counting problems for toric Calabi-Yau three-folds. We introduce

Quiver Yangians and $\mathcal{W}$-Algebras for Generalized Conifolds

We focus on quiver Yangians for most generalized conifolds. We construct a coproduct of the quiver Yangian following the similar approach in literature. We also prove that the quiver Yangians related

5d AGT correspondence of supergroup gauge theories from quantum toroidal $\mathfrak{gl}_{1}$

We discuss the 5d AGT correspondence of supergroup gauge theories with A-type supergroups. We introduce two intertwiners called positive and negative intertwiners to compute the instanton partition

Quantum loop groups for arbitrary quivers

. We study the dual constructions of quantum loop groups and Feigin-Odesskii type shuffle algebras for an arbitrary quiver, for which the ar- row parameters are arbitrary non-zero elements of any field.

Quiver Yangians and Crystal Melting: A Concise Summary

The goal of this short article is to summarize some of the recent developments in the quiver Yangians and crystal meltings. This article is based on a lecture delivered by the author at International

References

SHOWING 1-10 OF 68 REFERENCES

Shifted quiver quantum toroidal algebra and subcrystal representations

Abstract Recently, new classes of infinite-dimensional algebras, quiver Yangian (QY) and shifted QY, were introduced, and they act on BPS states for non-compact toric Calabi-Yau threefolds. In

Toroidal and elliptic quiver BPS algebras and beyond

Abstract The quiver Yangian, an infinite-dimensional algebra introduced recently in [1], is the algebra underlying BPS state counting problems for toric Calabi-Yau three-folds. We introduce

q-deformation of corner vertex operator algebras by Miura transformation

Recently, Gaiotto and Rapcak proposed a generalization of WN algebra by considering the symmetry at the corner of the brane intersection (corner vertex operator algebra). The algebra, denoted as

Quantum deformation of Feigin-Semikhatov's W-algebras and 5d AGT correspondence with a simple surface operator

The quantum toroidal algebra of $gl_1$ provides many deformed W-algebras associated with (super) Lie algebras of type A. The recent work by Gaiotto and Rapcak suggests that a wider class of deformed

The affine Yangian of gl1 revisited

Reflection states in Ding-Iohara-Miki algebra and brane-web for D-type quiver

A bstractReflection states are introduced in the vertical and horizontal modules of the Ding-Iohara-Miki (DIM) algebra (quantum toroidal gl1$$ \mathfrak{g}{\mathfrak{l}}_1 $$). Webs of DIM

Webs of W-algebras

A bstractWe associate vertex operator algebras to (p, q)-webs of interfaces in the topologically twisted N=4$$ \mathcal{N}=4 $$ super Yang-Mills theory. Y-algebras associated to trivalent junctions

Cohomological Hall algebras and perverse coherent sheaves on toric Calabi-Yau 3-folds.

To a smooth local toric Calabi-Yau 3-fold $X$ we associate the Heisenberg double of the (equivariant spherical) Cohomological Hall algebra in the sense of Kontsevich and Soibelman. This Heisenberg

Quantum algebraic approach to refined topological vertex

A bstractWe establish the equivalence between the refined topological vertex of Iqbal-Kozcaz-Vafa and a certain representation theory of the quantum algebra of type W1+∞ introduced by Miki. Our

Quiver Yangian from crystal melting

Abstract We find a new infinite class of infinite-dimensional algebras acting on BPS states for non-compact toric Calabi-Yau threefolds. In Type IIA superstring compactification on a toric
...