# A note on derivations of Murray–von Neumann algebras

@article{Kadison2014ANO, title={A note on derivations of Murray–von Neumann algebras}, author={Richard V. Kadison and Zhe Liu}, journal={Proceedings of the National Academy of Sciences}, year={2014}, volume={111}, pages={2087 - 2093} }

Significance In this article, derivations of algebras of unbounded operators acting on a Hilbert space are discussed. Derivations appear as the generators of one-parameter groups that express the symmetries and dynamical evolution of quantum-mechanical systems. One can see this relation to derivations by examining Dirac's Program for a mathematical formulation of the fundamentals of quantum mechanics. A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann…

## 10 Citations

Local derivations on Rings containing a von Neumann algebra and a question of Kadison.

- Mathematics
- 2013

We prove that if M is a von Neumann algebra whose abelian sum- mand is discrete, then every local derivation on the algebra of all measurable operators affilated withM is a derivation. This answers a…

Local And 2-Local Derivations On Algebras Of Measurable Operators

- Mathematics
- 2016

The present paper presents a survey of some recent results devoted to derivations, local derivations and 2-local derivations on various algebras of measurable operators affiliated with von Neumann…

Derivations and Projections on Jordan Triples. An introduction to nonassociative algebra, continuous cohomology, and quantum functional analysis

- Mathematics
- 2012

This paper is an elaborated version of the material presented by the author in a three hour minicourse at "V International Course of Mathematical Analysis in Andalusia," Almeria, Spain, September…

Quantum Fokker–Planck Dynamics

- MathematicsAnnales Henri Poincaré
- 2021

The Fokker-Planck equation is a partial differential equation which is a key ingredient in many models in physics. This paper aims to obtain a quantum counterpart of Fokker-Planck dynamics, as a…

Richard V. Kadison (1925–2018)

- MathematicsProceedings of the National Academy of Sciences
- 2019

Richard “Dick” V. Kadison, who died on August 22, 2018, almost single-handedly carried the torch for the subject of operator algebras during the 1950s, nurturing it both by his deep scientific contributions and by attracting and energetically supporting younger mathematicians entering the subject.

Non-existence of translation-invariant derivations on algebras of measurable functions

- MathematicsQuaestiones Mathematicae
- 2022

Let $S(0,1)$ be the $*$-algebra of all classes of Lebesgue measurable functions on the unit interval $(0,1)$ and let $(\mathcal{A},\left\|\cdot \right\|_\mathcal{A})$ be a complete symmetric…

Ring Isomorphisms of $$\ast$$-Subalgebras of Murray–von Neumann Factors

- MathematicsLobachevskii Journal of Mathematics
- 2021

The present paper is devoted to study of ring isomorphisms of $\ast$-subalgebras of Murray--von Neumann factors. Let $\cM,$ $\cN$ be von Neumann factors of type II$_1,$ and let $S(\cM),$ $S(\cN)$ be…

## References

SHOWING 1-10 OF 29 REFERENCES

Derivations of Murray-von Neumann Algebras

- Mathematics
- 2014

A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we study derivations of Murray-von Neumann algebras and their properties. We…

A double commutant theorem for Murray–von Neumann algebras

- MathematicsProceedings of the National Academy of Sciences
- 2012

It is shown that a maximal abelian self-adjoint subalgebra of the Murray–von Neumann algebra associated with a finite von Neumann algebras is the Murray-von-Neumann algebra, and the double commutant theorem of Von Neumann’s celebrated double commUTant theorem is presented.

On the cohomology groups of an associative algebra

- Mathematics
- 1945

The cohomology theory of associative algebras is concerned with the m-linear mappings of an algebra W into a two-sided W-module A. In this theory, the additive group (2(m):$) of the m-linear mappings…

On some mathematical aspects of the Heisenberg relation

- Mathematics
- 2011

The Heisenberg commutation relation, QP−PQ = iħI, is the most fundamental relation of quantum mechanics. Heisenberg’s encoding of the ad-hoc quantum rules in this simple relation embodies the…

On a certain class of operator algebras

- Mathematics
- 1960

algebras. The w*-closure of the pure states of one of these algebras is the set of all states of the algebra. This is not the first example of a C*-algebra whose set of pure states is not closed, cf.…

ON A CONJECTURE OF KAPLANSKY

- Mathematics
- 1960

PROOF. Let A be a C*-algebra, ' a derivation of A. It is enough to show that the derivation is continuous on the self-adjoint portion As of A. Therefore if it is not continuous, by the closed graph…

On rings of operators

- Mathematics
- 1967

Let 5C be a complex Hubert Space, J3(3C) the ring of bounded operators on 3C, E an abelian symmetric subring of B(3Z) containing the identity which is closed in the weak operator topology, E\ the…

The Principles of Quantum Mechanics

- PhysicsNature
- 1947

IT is now twenty years since the theory of quantum mechanics was founded, and not much less since the first edition of Dirac's book was published. Ever since, it has been a classic of scientific…

DERIVATIONS OF OPERATOR GROUP ALGEBRAS.

- Mathematics
- 1966

Abstract : It is shown that each derivation of the von Neumann algebra generated by the regular representation of a diserete group is inner.