A note on coherent orientations for exact Lagrangian cobordisms

@article{Karlsson2019ANO,
  title={A note on coherent orientations for exact Lagrangian cobordisms},
  author={Cecilia Karlsson},
  journal={Quantum Topology},
  year={2019}
}
Let $L \subset \mathbb R \times J^1(M)$ be a spin, exact Lagrangian cobordism in the symplectization of the 1-jet space of a smooth manifold $M$. Assume that $L$ has cylindrical Legendrian ends $\Lambda_\pm \subset J^1(M)$. It is well known that the Legendrian contact homology of $\Lambda_\pm$ can be defined with integer coefficients, via a signed count of pseudo-holomorphic disks in the cotangent bundle of $M$. It is also known that this count can be lifted to a mod 2 count of pseudo… 
Legendrian contact homology for attaching links in higher dimensional subcritical Weinstein manifolds
Let $\Lambda$ be a link of Legendrian spheres in the boundary of a subcritical Weinstein manifold $X$. We show that the computation of the Legendrian contact homology of $\Lambda$ can be reduced to a
Braid Loops with infinite monodromy on the Legendrian contact DGA
We present the first examples of elements in the fundamental group of the space of Legendrian links in (S, ξst) whose action on the Legendrian contact DGA is of infinite order. This allows us to
Obstructions to reversing Lagrangian surgery in Lagrangian fillings
Given an immersed, Maslov-0, exact Lagrangian filling of a Legendrian knot, if the filling has a vanishing index and action double point, then through Lagrangian surgery it is possible to obtain a
The persistence of a relative Rabinowitz-Floer complex
We give a quantitative refinement of the invariance of the Legendrian contact homology algebra in general contact manifolds. We show that in this general case, the Lagrangian cobordism trace of a
Infinitely many planar fillings and symplectic Milnor fibers
We provide a new family of Legendrian links with infinitely many distinct exact orientable Lagrangian fillings up to Hamiltonian isotopy. This family of links includes the first examples of
A filtered generalization of the Chekanov-Eliashberg algebra
A BSTRACT . We define a new algebra associated to a Legendrian submanifold Λ of a contact manifold of the form R t × W , called the planar diagram algebra and denoted PDA (Λ , P ) . It is a
Orientations of Morse flow trees in Legendrian contact homology
Let L be a spin Legendrian submanifold of the 1-jet space of a smooth manifold. We prove that the Legendrian contact homology of L with integer coefficients can be computed using Morse flow trees. We
Legendrian contact homology in $\mathbb{R}^3$
This is an introduction to Legendrian contact homology and the Chekanov-Eliashberg differential graded algebra, with a focus on the setting of Legendrian knots in $\mathbb{R}^3$.
Non-fillable Augmentations of Twist Knots
We establish new examples of augmentations of Legendrian twist knots that cannot be induced by orientable Lagrangian fillings. To do so, we use a version of the Seidel –Ekholm–Dimitroglou Rizell
A note on the infinite number of exact Lagrangian fillings for spherical spuns
  • R. Golovko
  • Mathematics
    Pacific Journal of Mathematics
  • 2022
In this short note we discuss high-dimensional examples of Legendrian submanifolds of the standard contact Euclidean space with infinite number of exact Lagrangian fillings up to Hamiltonian isotopy.
...
...

References

SHOWING 1-10 OF 25 REFERENCES
Rational symplectic field theory over Z2 for exact Lagrangian cobordisms
We construct a version of rational Symplectic Field Theory for pairs $(X,L)$, where $X$ is an exact symplectic manifold, where $L\subset X$ is an exact Lagrangian submanifold with components
Legendrian knots and exact Lagrangian cobordisms
We introduce constructions of exact Lagrangian cobordisms with cylindrical Legendrian ends and study their invariants which arise from Symplectic Field Theory. A pair $(X,L)$ consisting of an exact
Duality between Lagrangian and Legendrian invariants
Consider a pair $(X,L)$, of a Weinstein manifold $X$ with an exact Lagrangian submanifold $L$, with ideal contact boundary $(Y,\Lambda)$, where $Y$ is a contact manifold and $\Lambda\subset Y$ is a
On homological rigidity and flexibility of exact Lagrangian endocobordisms
We show that an exact Lagrangian cobordism L ⊂ ℝ × P × ℝ from a Legendrian submanifold Λ ⊂ P × ℝ to itself satisfies Hi(L; 𝔽) = Hi(Λ; 𝔽) for any field 𝔽, given that Λ admits a spin exact
ORIENTATIONS IN LEGENDRIAN CONTACT HOMOLOGY AND EXACT LAGRANGIAN IMMERSIONS
We show how to orient moduli spaces of holomorphic disks with boundary on an exact Lagrangian immersion of a spin manifold into complex n-space in a coherent manner. This allows us to lift the
LIFTING PSEUDO-HOLOMORPHIC POLYGONS TO THE SYMPLECTISATION OF P × R AND APPLICATIONS
Let R × (P × R) be the symplectisation of the contactisation of an exact symplectic manifold P , and let R × Λ be a cylinder over a Legendrian submanifold of the contactisation. We show that a
The contact homology of Legendrian submanifolds in R2n+1
We define the contact homology for Legendrian submanifolds in standard contact (2n + 1)-space using moduli spaces of holomorphic disks with Lagrangian boundary conditions in complex n-space. This
Legendrian contact homology in $P \times \mathbb{R}$
A rigorous foundation for the contact homology of Legendrian submanifolds in a contact manifold of the form P x R, where P is an exact symplectic manifold, is established. The class of such contact
Differential algebra of Legendrian links
Let the space R = {(q, p, u)} be equipped with the standard contact form α = du − pdq. A link L ⊂ R3 is called Legendrian if the restriction of α to L vanishes. Two Legendrian links are said to be
Morse flow trees and Legendrian contact homology in 1-jet spaces
Let L ⊂ J 1 (M) be a Legendrian submanifold of the 1-jet space of a Riemannian n-manifold M. A correspondence is established between rigid flow trees in M determined by L and boundary punctured rigid
...
...