# A note on a problem of Apollonius

@article{FitzGerald1974ANO, title={A note on a problem of Apollonius}, author={J. Fitz-Gerald}, journal={Journal of Geometry}, year={1974}, volume={5}, pages={15-26} }

Degenerate cases of the problem of Apollonius, to construct a circle tangent to each of three given circles, are discussed and exhaustively classified for proper circles (finite and non-zero radius). Singular cases are considered, and an outline of the extension of the problem to higher dimensions given. Amusing alternative interpretations of the results are obtained.

#### 6 Citations

The apollonian octets and an inversive form of Krause's theorem

- Mathematics
- 1982

Abstract Suppose we are given three disjoint circles in the Euclidean plane with the property that none of them contains the other two. Then there are eight distinct circles tangent to the given… Expand

A case of the 3-dimensional problem of Apollonius

- Mathematics
- 1991

SummaryInn-dimensions the problem of Apollonius is to determine the (n−1)-spheres tangent ton+1 given (n−1)-spheres. In case no two of the given (n−1)-spheres intersect and no three have the property… Expand

A new solution of Apollonius’ problem based on stereographic projections of Möbius and Laguerre planes

- Mathematics
- 2019

In this paper we give a new proof of Apollonius’ problem based on the stereographic projection in spherical model of Möbius geometry and cylinder model of Laguerre geometry.

N ov 2 01 9 IMPROVED BOUNDS FOR RESTRICTED PROJECTION FAMILIES VIA WEIGHTED FOURIER

- 2019

It is shown that if A ⊆ R3 is a Borel set of Hausdorff dimension dimA > 1.5, then for a.e. θ ∈ [0, 2π) the projection πθ(A) of A onto the 2-dimensional plane orthogonal to 1 √ 2 (cos θ, sin θ, 1)… Expand

Improved bounds for restricted projection families via weighted Fourier restriction.

- Mathematics
- 2019

It is shown that if $A \subseteq \mathbb{R}^3$ is a Borel set of Hausdorff dimension $\dim A > 1.5$, then for a.e.~$\theta \in [0,2\pi)$ the projection $\pi_{\theta}(A)$ of $A$ onto the 2-dimensional… Expand