A nontrivial lower bound on the Shannon capacities of the complements of odd cycles

@article{Bohman2003ANL,
  title={A nontrivial lower bound on the Shannon capacities of the complements of odd cycles},
  author={Tom Bohman and Ron Holzman},
  journal={IEEE Trans. Information Theory},
  year={2003},
  volume={49},
  pages={721-722}
}
This paper contains a construction for independent sets in the powers of the complements of odd cycles. In particular, we show that α ( C 2 2n+3 ) ≥ 22n + 1. It follows that for n ≥ 0 we have Θ(C2n+3) > 2, where Θ(G) denotes the Shannon capacity of graph G. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-9 of 9 references

Graph Powers, Contemporary Combinatorics

  • N. Alon
  • New York,
  • 2002
1 Excerpt

Shannon and Ramsey numbers, a short story

  • J. Nešetřil, M. Rosenfeld, C.E.I. Schur
  • Discrete Mathematics,
  • 2001
1 Excerpt

Graphs and Hypergraphs. Amsterdam and London, North-Holland

  • C. Berge
  • New York, American Elsevier,
  • 1973
1 Excerpt

Numerical invariants and the strong product of graphs

  • R. S. Hales
  • Journal of Combinatorial Theory – B,
  • 1973
1 Excerpt

A Combinatorial Packing Problem, Computers in Algebra and Number Theory, Providence, American Mathematical Society

  • L. Baumert, R. McEliece, E. Rodemich, H. Rumsey, R. Stanley, H. Taylor
  • 1971
1 Excerpt

Similar Papers

Loading similar papers…