Corpus ID: 199405238

A new refinement of Euler numbers on counting alternating permutations

@article{Kobayashi2019ANR,
  title={A new refinement of Euler numbers on counting alternating permutations},
  author={Masato Kobayashi},
  journal={arXiv: Combinatorics},
  year={2019}
}
At a crossroads of calculus and combinatorics, the generating function of secant and tangent numbers (Euler numbers) provides enumeration of alternating permutations. In this article, we present a new refinement of Euler numbers to answer the combinatorial question on some particular relation of Euler numbers proved by Heneghan-Petersen, Power series for up-down min-max permutations, College Math. Journal, Vol. 45, No. 2 (2014), 83-91. 

Tables from this paper

References

SHOWING 1-2 OF 2 REFERENCES
Développement de sec x et tan x
  • C. R. Math. Acad. Sci. Paris