# A new class of upper bounds on the log partition function

- 2002

#### Abstract

We introduce a new class of upper bounds on the log partition function of a Markov random field (MRF). This quantity plays an important role in various contexts, including approximating marginal distributions, parameter estimation, combinatorial enumeration, statistical decision theory, and large-deviations bounds. Our derivation is based on concepts from convex duality and information geometry: in particular, it exploits mixtures of distributions in the exponential domain, and the Legendre mapping between exponential and mean parameters. In the special case of convex combinations of tree-structured distributions, we obtain a family of variational problems, similar to the Bethe variational problem, but distinguished by the following desirable properties: i) they are convex, and have a unique global optimum; and ii) the optimum gives an upper bound on the log partition function. This optimum is defined by stationary conditions very similar to those defining fixed points of the sum-product algorithm, or more generally, any local optimum of the Bethe variational problem. As with sum-product fixed points, the elements of the optimizing argument can be used as approximations to the marginals of the original model. The analysis extends naturally to convex combinations of hypertree-structured distributions, thereby establishing links to Kikuchi approximations and variants.

**DOI:**10.1109/TIT.2005.850091

#### Extracted Key Phrases

#### 14 Figures and Tables

#### Statistics

#### 374 Citations

**307**and

**459**citations based on the available data.

See our **FAQ** for additional information.