A new Galois structure in the category of internal preorders
@article{Facchini2019ANG, title={A new Galois structure in the category of internal preorders}, author={A. Facchini and C. Finocchiaro and M. Gran}, journal={arXiv: Category Theory}, year={2019} }
Let $\mathsf{PreOrd}(\mathbb C)$ be the category of internal preorders in an exact category $\mathbb C$. We show that the pair $(\mathsf{Eq}(\mathbb C), \mathsf{ParOrd}(\mathbb C))$ is a pretorsion theory in $\mathsf{PreOrd}(\mathbb C)$, where $\mathsf{Eq}(\mathbb C)$ and $\mathsf{ParOrd}(\mathbb C)$) are the full subcategories of internal equivalence relations and of internal partial orders in $\mathbb C$, respectively. We observe that $\mathsf{ParOrd}(\mathbb C)$ is a reflective subcategory… CONTINUE READING
One Citation
References
SHOWING 1-10 OF 38 REFERENCES
Some remarks on connectors and groupoids in Goursat categories
- Mathematics, Computer Science
- Log. Methods Comput. Sci.
- 2017
- 5
- PDF