A nearly optimal discrete query quantum algorithm for evaluating NAND formulas
@article{Ambainis2007ANO, title={A nearly optimal discrete query quantum algorithm for evaluating NAND formulas}, author={Andris Ambainis}, journal={arXiv: Quantum Physics}, year={2007} }
We present an O(\sqrt{N}) discrete query quantum algorithm for evaluating balanced binary NAND formulas and an O(N^{{1/2}+O(\frac{1}{\sqrt{\log N}})}) discrete query quantum algorithm for evaluating arbitrary binary NAND formulas.
33 Citations
Quantum Algorithms for Evaluating Min-MaxTrees
- Computer ScienceTQC
- 2008
A bounded-error quantum algorithm for evaluating Min - Max trees with N = 1 + o(1) queries, where N is the size of the tree and the allowable queries are comparisons of the form [x j k ].
Every NAND formula of size N can be evaluated in time N^{1/2+o(1)} on a quantum computer
- Mathematics
- 2007
For every NAND formula of size N, there is a bounded-error N^{1/2+o(1)}-time quantum algorithm, based on a coined quantum walk, that evaluates this formula on a black-box input. Balanced, or…
The quantum query complexity of certification
- Computer Science, MathematicsQuantum Inf. Comput.
- 2010
It is shown that the zero-error quantum query complexity of evaluating such formulas is O(d^{(k+1)/2}) (again neglecting a logarithmic factor), and the lower bound relies on the fact that the quantum adversary method obeys a direct sum theorem.
ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N ON A QUANTUM COMPUTER∗
- Computer Science, Mathematics
- 2010
A bounded-error quantum algorithm that solves the problem of evaluating an AND-OR formula on an N-bit black-box input in time N1/2+o(1) and in particular, approximately balanced formulas can be evaluated in O( √ N) queries, which is optimal.
Any AND-OR Formula of Size N can be Evaluated in time N^{1/2 + o(1)} on a Quantum Computer
- Mathematics48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07)
- 2007
It follows that the (2-o(1))th power of the quantum query complexity is a lower bound on the formula size, almost solving in the positive an open problem posed by Laplante, Lee and Szegedy.
Faster quantum algorithm for evaluating game trees
- Computer ScienceSODA '11
- 2011
An O(√n log n)-query quantum algorithm for evaluating size-n AND-OR formulas and a novel tensor-product span program composition method, which generates graphs with vertices corresponding to minimal zero-certificates is given.
Span-Program-Based Quantum Algorithm for Evaluating Unbalanced Formulas
- Computer ScienceTQC
- 2011
A quantum algorithm is given to evaluate formulas over any finite boolean gate set, Provided that the complexities of the input subformulas to any gate differ by at most a constant factor, the algorithm has optimal query complexity.
Challenges of adiabatic quantum evaluation of NAND trees
- Computer Science, PhysicsQuantum Inf. Process.
- 2015
This work focuses on a number of issues ranging from: (1) mapping mechanisms; (2) spectrum analysis and remapping; (3) numerical evaluation of spectrum gaps; and (4) algorithmic procedures, which are then used to provide numerical evidence for the existence of a N2logN2 gap.
Reflections for quantum query algorithms
- Computer ScienceSODA '11
- 2011
We show that any boolean function can be evaluated optimally by a quantum query algorithm that alternates a certain fixed, input-independent reflection with a second reflection that coherently…
Reflections for quantum query complexity : The general adversary bound is tight for every boolean function
- Computer Science
- 2010
We show that any boolean function can be evaluated optimally by a bounded-error quantum query algorithm that alternates a certain fixed, input-independent reflection with coherent queries to the…
References
SHOWING 1-10 OF 24 REFERENCES
Discrete-Query Quantum Algorithm for NAND Trees
- Computer ScienceTheory Comput.
- 2009
It is pointed out that the algorithm given by Edward Farhi, Jeffrey Goldstone, and Sam Gutmann can be converted into an algorithm using N^[1/2 + o(1)] queries in the conventional (discrete) quantum query model.
Every NAND formula on N variables can be evaluated in time O(N^{1/2+eps})
- Mathematics
- 2007
It follows that the (2 − ε)-th power of the quantum query complexity is a lower bound on the formula size, almost solving in the positive an open problem posed by Laplante, Lee and Szegedy.
A Quantum Algorithm for the Hamiltonian NAND Tree
- Computer Science, PhysicsTheory Comput.
- 2008
A quantum algorithm for the binary NAND tree problem in the Hamil- tonian oracle model using a continuous time quantum walk with a running time proportional to p N is given.
Quantum walk algorithm for element distinctness
- Computer Science45th Annual IEEE Symposium on Foundations of Computer Science
- 2004
An O(N/sup k/(k+1)/) query quantum algorithm is given for the generalization of element distinctness in which the authors have to find k equal items among N items.
Quantum Search on Bounded-Error Inputs
- Computer ScienceICALP
- 2003
It is shown that quantum amplitude amplification can be made to work also with a bounded-error verifier, and optimal quantum upper bounds of O(√N) queries for all constant-depth AND-OR trees on N variables are obtained.
Quantum lower bounds by quantum arguments
- Computer ScienceSTOC '00
- 2000
Two new Ω(√N) lower bounds on computing AND of ORs and inverting a permutation and more uniform proofs for several known lower bounds which have been previously proven via a variety of different techniques are proved.
Complexity measures and decision tree complexity: a survey
- Computer ScienceTheor. Comput. Sci.
- 2002
A lower bound on the quantum query complexity of read-once functions
- Computer Science, MathematicsElectron. Colloquium Comput. Complex.
- 2002
Size-Depth Tradeoffs for Algebraic Formulas
- Computer Science, MathematicsSIAM J. Comput.
- 1995
It is shown that, for any fixed $\epsilon > 0$, any algebraic formula of size $S$ can be converted into an equivalent formula of depth $O(\log S)$ and size $O(S^{1+\ep silon})$.
A fast quantum mechanical algorithm for database search
- Computer ScienceSTOC '96
- 1996
In early 1994, it was demonstrated that a quantum mechanical computer could efficiently solve a well-known problem for which there was no known efficient algorithm using classical computers, i.e. testing whether or not a given integer, N, is prime, in a time which is a finite power of o (logN) .