A multigrid approach to the average lattices of quasicrystals.

@article{Aragn2002AMA,
  title={A multigrid approach to the average lattices of quasicrystals.},
  author={Jos{\'e} Luis Arag{\'o}n and G. Naumis and M. Torres},
  journal={Acta crystallographica. Section A, Foundations of crystallography},
  year={2002},
  volume={58 Pt 4},
  pages={
          352-60
        }
}
An average structure associated with a given quasilattice is a system composed of several average lattices that in reciprocal space produces strong main reflections. The average lattice of a quasicrystal is a useful concept closely related to the geometric description of the quasicrystal to crystal transformation and has been proved to be structurally significant. Here we calculate average structures for arbitrary two- and three-dimensional quasilattices using the dual generalized method… 
Analytic expressions for the vertex coordinates of quasiperiodic lattices
Using the generalized dual method, closed analytical expressions for the coordinates of quasiperiodic lattices, derived from periodic or quasiperiodic grids, are given. The obtained formulae
Discussion on clusters, phasons and quasicrystal stabilisation
This paper summarises a two-hour discussion at the Ninth International Conference on Quasicrystals, including nearly 20 written comments sent afterwards, concerning (i) the meaning [if any] of

References

SHOWING 1-2 OF 2 REFERENCES