A model structure on the category of diffeological spaces
@article{Haraguchi2013AMS, title={A model structure on the category of diffeological spaces}, author={Tadayuki Haraguchi and Kazuhisa Shimakawa}, journal={arXiv: Algebraic Topology}, year={2013} }
We construct a model category structure on the category of diffeological spaces which is Quillen equivalent to the model structure on the category of topological spaces based on the notions of Serre fibrations and weak homotopy equivalences.
9 Citations
Model categories of smooth spaces
- Mathematics
- 2016
We construct a model structure on the category of diffeological spaces whose weak equivalences are just smooth maps inducing isomorphisms on smooth homotopy groups. Our approach applies to the…
Homotopy structures of smooth CW complexes
- Mathematics
- 2018
In this paper we present the notion of smooth CW complexes given by attaching cubes on the category of diffeological spaces, and we study their smooth homotopy structures related to the homotopy…
An Introduction to Diffeology
- Mathematics
- 2021
This text presents the basics of Diffeology and themain domains: Homotopy, FiberBundles,Quotients, Singularities, Cartan-deRhamCalculus —which form the core of differential geometry— from the point…
A Homotopy Theory for Diffeological Spaces ( Thesis format : Monograph ) by Enxin
- Mathematics
- 2012
Diffeological spaces are generalizations of smooth manifolds. In this paper, we study the homotopy theory of diffeological spaces. We begin by proving basic properties of the smooth homotopy groups…
The homotopy theory of diffeological spaces
- Mathematics
- 2012
Diffeological spaces are generalizations of smooth manifolds. In this paper, we study the homotopy theory of diffeological spaces. We begin by proving basic properties of the smooth homotopy groups…
On homotopy types of diffeological cell complexes
- Mathematics
- 2019
We introduce the notion of smooth cell complexes and its subclass consisting of gathered cell complexes within the category of diffeological spaces (cf. Definitions 1 and 3). It is shown that the…
Model category of diffeological spaces
- MathematicsJournal of Homotopy and Related Structures
- 2018
The existence of a model structure on the category $${\mathcal {D}}$$D of diffeological spaces is crucial to developing smooth homotopy theory. We construct a compactly generated model structure on…
Generalized maps between diffeological spaces
- Mathematics
- 2020
By exploiting the idea of Colombeau generalized function, we introduce a notion of asymptotic map between arbitrary diffeological spaces. The category consisting of diffeological spaces and…
Smooth constructions of homotopy-coherent actions
- Mathematics
- 2020
We prove that, for nice classes of infinite-dimensional smooth groups G, natural constructions in smooth topology and symplectic topology yield homotopically coherent group actions of G. This yields…
References
SHOWING 1-10 OF 15 REFERENCES
Homology and cohomology via enriched bifunctors
- Mathematics
- 2010
We show that the category of numerically generated pointed spaces is complete, cocomplete, and monoidally closed with respect to the smash product, and then utilize these features to establish a…
Algebraic Topology
- Mathematics
The focus of this paper is a proof of the Nielsen-Schreier Theorem, stating that every subgroup of a free group is free, using tools from algebraic topology.
Homological Algebra for Diffeological Vector Spaces
- Mathematics
- 2014
Diffeological spaces are natural generalizations of smooth manifolds, introduced by J.M.~Souriau and his mathematical group in the 1980's. Diffeological vector spaces (especially fine diffeological…
The homotopy theory of diffeological spaces
- Mathematics
- 2012
Diffeological spaces are generalizations of smooth manifolds. In this paper, we study the homotopy theory of diffeological spaces. We begin by proving basic properties of the smooth homotopy groups…
Topology from the differentiable viewpoint
- Mathematics
- 1965
Preface1Smooth manifolds and smooth maps1Tangent spaces and derivatives2Regular values7The fundamental theorem of algebra82The theorem of Sard and Brown10Manifolds with boundary12The Brouwer fixed…
On model structure for coreflective subcategories of a model category
- Mathematics
- 2013
Let $\bf C$ be a coreflective subcategory of a cofibrantly generated model category $\bf D$. In this paper we show that under suitable conditions $\bf C$ admits a cofibrantly generated model…
Topology and Groupoids
- Mathematics
- 2006
Omar Antoĺın Camarena pointed out a gap in the proofs in [BT&G, Bro06] of a condition for the Phragmen–Brouwer Property not to hold; this note gives the correction in terms of a result on a pushout…
Introduction to Smooth Manifolds
- Mathematics
- 2002
Preface.- 1 Smooth Manifolds.- 2 Smooth Maps.- 3 Tangent Vectors.- 4 Submersions, Immersions, and Embeddings.- 5 Submanifolds.- 6 Sard's Theorem.- 7 Lie Groups.- 8 Vector Fields.- 9 Integral Curves…
Diffeology
- Mathematical Surveys and Monographs, vol. 165, American Mathematical Society, Providence, RI
- 2013