A model of ZF with an infinite free complete Boolean algebra

@article{Stavi1975AMO,
  title={A model of ZF with an infinite free complete Boolean algebra},
  author={J. Stavi},
  journal={Israel Journal of Mathematics},
  year={1975},
  volume={20},
  pages={149-163}
}
  • J. Stavi
  • Published 1975
  • Mathematics
  • Israel Journal of Mathematics
  • By a theorem of Gaifman and Hales no model of ZF+AC (Zermelo-Fraenkel set theory plus the axiom of choice) contains an infinite free complete Boolean algebra. We construct a model of ZF in which an infinite free c.B.a. exists. 

    References

    SHOWING 1-10 OF 10 REFERENCES
    On the non-existence of free complete Boolean algebras
    • 52
    • PDF
    On strongly and weakly defined boolean terms
    • 1
    Extensions of Kripke's embedding theorem
    • 2
    New proof of a theorem of Gaifman and Hales
    • 20
    • PDF
    Incompleteness of a Formal System for Infinitary Finite-Quantifier Formulas
    • J. Gregory
    • Mathematics, Computer Science
    • J. Symb. Log.
    • 1971
    • 5
    A hierarchy of formulas in set theory
    • 113
    An extension of a theorem of Gaifman-Hales-Solvay
    • 16
    • PDF
    Axiom of choice
    • 289
    Infinite Boolean polynomials I
    • 36
    • PDF