A-loops close to code loops are groups

@inproceedings{Drpal2010AloopsCT,
  title={A-loops close to code loops are groups},
  author={Ales Dr{\'a}pal},
  year={2010}
}
Let Q be a diassociative A-loop which is centrally nilpotent of class 2 and which is not a group. Then the factor over the centre cannot be an elementary abelian 2-group. 

From This Paper

Topics from this paper.

Citations

Publications citing this paper.

References

Publications referenced by this paper.
SHOWING 1-7 OF 7 REFERENCES

Sporadic Groups, Cambridge Tracts in Mathematics 104

  • M. Aschbacher
  • 1994
1 Excerpt

Moufang loops with a unique non-identity commutator (associator, square)

  • O. Chein, E. G. Goodaire
  • J. Algebra
  • 1990
1 Excerpt

Code loops

  • L. GriessR.
  • J . Algebra
  • 1986

A theorem on A-loops

  • M. J. Osborn
  • Proc. Amer. Math. Soc
  • 1958
1 Excerpt

Loops whose inner mappings are automorphisms

  • R. H. Bruck, L. J. Paige
  • Ann. of Math
  • 1954
1 Excerpt

Contributions to the theory of loops

  • R. H. Bruck
  • Trans. Amer. Math. Soc
  • 1946
1 Excerpt

Similar Papers

Loading similar papers…