# A hereditarily indecomposable $ {\mathcal{L}_{\infty}} $-space that solves the scalar-plus-compact problem

@article{Argyros2011AHI, title={A hereditarily indecomposable \$ \{\mathcal\{L\}\_\{\infty\}\} \$-space that solves the scalar-plus-compact problem}, author={Spiros A. Argyros and Richard Haydon}, journal={Acta Mathematica}, year={2011}, volume={206}, pages={1-54} }

We construct a hereditarily indecomposable Banach space with dual space isomorphic to ℓ1. Every bounded linear operator on this space is expressible as λI + K, with λ a scalar and K compact.

## 161 Citations

Hereditarily indecomposable Banach algebras of diagonal operators

- Mathematics
- 2009

AbstractWe provide a characterization of the Banach spaces X with a Schauder basis (en)n∈ℕ which have the property that the dual space X* is naturally isomorphic to the space Ldiag(X) of diagonal…

The strong convex property and C0-semigroups on some hereditarily indecomposable Banach spaces

- Mathematics
- 2017

In this paper, we study the strong convex compactness property on the hereditarily indecomposable Banach spaces denoted respectively by XGM and XAM constructed by T. Gowers and B. Maurey (1993) and…

A dual method of constructing hereditarily indecomposable Banach spaces

- Mathematics
- 2015

A new method of defining hereditarily indecomposable Banach spaces is presented. This method provides a unified approach for constructing reflexive HI spaces and also HI spaces with no reflexive…

Additive Mappings Preserving Fredholm Operators with Fixed Nullity or Defect

- MathematicsActa Mathematica Scientia
- 2021

Let $${\cal X}$$
be an infinite-dimensional real or complex Banach space, and $${\cal B}({\cal X})$$
the Banach algebra of all bounded linear operators on $${\cal X}$$
. In this paper, given any…

ON THE STRUCTURE OF SEPARABLE -SPACES

- Mathematics
- 2016

Based on a construction method introduced by J. Bourgain and F. Delbaen, we give a general definition of a Bourgain-Delbaen space and prove that every infinite dimensional separable…

Operators on Bourgain–Delbaen spaces

- Mathematics
- 2016

We prove that, for a suitable choice of real numbers $a, b$, every operator from $\ell_2$ to $X_{a,b}$ and from $X_{a,b}$ to $\ell_2$ must be compact, where $X_{a,b}$ is the Bourgain- Delbaen's space.

More (\ell_r) saturated (\mathcal{L}_\infty) spaces

- Mathematics
- 2010

We present some new examples of separable (\mathcal_\infty) spaces which are (\ell_r) saturated for some (1 < r < \infty).

On the undefinability of Tsirelson's space and its descendants.

- Mathematics
- 2018

We prove that Tsirelson's space cannot be defined explicitly from the classical Banach sequence spaces. We also prove that any Banach space that is explicitly definable from a class of spaces that…

The universality of ℓ1 as a dual space

- Mathematics
- 2011

Let X be a Banach space with a separable dual. We prove that X embeds isomorphically into a $${{\mathcal L}_\infty}$$ space Z whose dual is isomorphic to ℓ1. If, moreover, U is a space with separable…

## References

SHOWING 1-10 OF 45 REFERENCES

An indecomposable and unconditionally saturated Banach space

- Mathematics
- 2003

We construct an indecomposable reflexive Banach space $X_{ius}$ such that every infinite dimensional closed subspace contains an unconditional basic sequence. We also show that every operator $T\in…

Hereditarily indecomposable, separable ℒ∞ Banach spaces with ℓ1 dual having few but not very few operators

- MathematicsJ. Lond. Math. Soc.
- 2012

This construction answers a question of Argyros and Haydon ("A hereditarily indecomposable space that solves the scalar-plus-compact problem").

The dual of the bourgain-delbaen space

- Mathematics
- 1998

AbstractIt is shown that a
$$\mathcal{L}_\infty $$
-space with separable dual constructed by Bourgain and Delbaen has small Szlenk index and thus does not have a quotient isomorphic toC(ωω). It…

Quotient Hereditarily Indecomposable Banach Spaces

- MathematicsCanadian Journal of Mathematics
- 1999

Abstract A Banach space $X$ is said to be quotient hereditarily indecomposable if no infinite dimensional quotient of a subspace of $X$ is decomposable. We provide an example of a quotient…

Strictly singular non-compact operators on hereditarily indecomposable Banach spaces

- Mathematics
- 2002

An example is given of a strictly singular non-compact operator on a Hereditarily Indecomposable, reflexive, asymptotic l 1 Banach space. The construction of this operator relies on the existence of…

The cofinal property of the Reflexive Indecomposable Banach spaces

- Mathematics
- 2010

It is shown that every separable reflexive Banach space is a quotient of a reflexive Hereditarily Indecomposable space, which yields that every separable reflexive Banach is isomorphic to a subspace…

A construction of ℒ∞-spaces and related Banach spacesand related Banach spaces

- Mathematics
- 1983

AbstractLet λ>1. We prove that every separable Banach space E can be embedded isometrically into a separable ℒ∞λ-spaceX such thatX/E has the RNP and the Schur property. This generalizes a result in…

A Remark about the Scalar-Plus-Compact Problem

- Mathematics
- 1998

In [GM] a Banach space X was constructed such that every operator from a subspace Y ⊂ X into the space is of the form λIY→X +S, where IY→X is the inclusion map and S is strictly singular. In this…