# A generalization of the Kantor-Koecher-Titsconstruction 1

@article{Palmkvist2008AGO, title={A generalization of the Kantor-Koecher-Titsconstruction 1}, author={Jakob Palmkvist}, journal={Journal of Generalized Lie Theory and Applications}, year={2008}, volume={2}, pages={226-230} }

The Kantor-Koecher-Tits construction associates a Lie algebra to any Jordan algebra. We generalize this construction to include also extensions of the associated Lie algebra. In particular, the conformal realization of so(p + 1, q + 1) generalizes to so(p + n, q + n), for arbitrary n, with a linearly realized subalgebra so(p, q). We also show that the construction applied to 3 × 3 matrices over the division algebras R, C, H, O gives rise to the exceptional Lie algebras f4, e6, e7, e8, as well…

## One Citation

### Octonions, Exceptional Jordan Algebra and The Role of The Group $$F_4$$F4 in Particle Physics

- MathematicsAdvances in Applied Clifford Algebras
- 2018

Normed division rings are reviewed in the more general framework of composition algebras that include the split (indefinite metric) case. The Jordan–von Neumann–Wigner classification of finite…

## References

SHOWING 1-10 OF 10 REFERENCES

### On Compact Generalized Jordan Triple Systems of the Second Kind

- Mathematics
- 1988

$(uv(xyz))=((uvx)yz)-(x(vuy)z)+(xy(uvz))$ is valid for $u,$ $v,$ $x,$ $y,$ $z\in U$. If, in addition, the relation $(xyz)=(zyx)$ holds for $x,$ $y,$ $z\in U$, then $B$ is said to be a Jordan triple…

### Division algebras, (pseudo)orthogonal groups and spinors

- Mathematics
- 1984

The groups SO( nu -1), SO( nu ), SO( nu +1), SO( nu +1, 1) and SO( nu +2, 2) ( nu =1, 2, 4, 8) and their spin representations are described in terms of the division algebras R, C, H and O.

### A realization of the Lie Algebra associated to a Kantor triple system

- Mathematics
- 2006

We present a nonlinear realization of the 5-graded Lie algebra associated to a Kantor triple system. Any simple Lie algebra can be realized in this way, starting from an arbitrary 5-grading. In…

### Conformal and Quasiconformal Realizations¶of Exceptional Lie Groups

- Mathematics
- 2000

Abstract: We present a nonlinear realization of E8(8) on a space of 57 dimensions, which is quasiconformal in the sense that it leaves invariant a suitably defined “light cone” in ℝ57. This…

### Generalized conformal realizations of Kac–Moody algebras

- Mathematics
- 2009

We present a construction which associates an infinite sequence of Kac–Moody algebras, labeled by a positive integer n, to one single Jordan algebra. For n=1, this reduces to the well known…

### Imbedding of Jordan algebras into Lie algebras I. Amer

- J. Math
- 1967

### Some generalizations of Jordan algebras

- Trudy Sem. Vektor. Tenzor. Anal
- 1972

### Classification of irreducible transitively differential groups

- Soviet Math. Dokl
- 1964