A finite difference method with non-uniform timesteps for fractional diffusion equations

  title={A finite difference method with non-uniform timesteps for fractional diffusion equations},
  author={Santos B. Yuste and Joaqu{\'i}n Quintana-Murillo},
  journal={Computer Physics Communications},
An implicit finite difference method with non-uniform timesteps for solving the fractional diffusion equation in the Caputo form is proposed. The method allows one to build adaptive methods where the size of the timesteps is adjusted to the behavior of the solution in order to keep the numerical errors small without the penalty of a huge computational cost. Themethod is unconditionally stable and convergent. In fact, it is shown that consistency and stability implies convergence for a rather… CONTINUE READING


Publications citing this paper.
Showing 1-10 of 19 extracted citations


Publications referenced by this paper.
Showing 1-10 of 22 references


  • S. B. Yuste, L. Acedo, SIAM J. Numer
  • 42
  • 2005
Highly Influential
4 Excerpts

The Fractional Calculus

  • K. B. Oldham, J. Spanier
  • Academic Press, New York
  • 1974
Highly Influential
3 Excerpts

Nonlinear Dyn

  • J. Quintana-Murillo, S. B. Yuste, J. Comput
  • 6
  • 2011
1 Excerpt

Discretization of fractionalorder operators and fractional differential equations on a non-equidistant mesh

  • T. Skovranek, V. V. Verbickij, Y. Tarte, I. Podlubny
  • Article no. FDA10-062, in: I. Podlubny, B.M…
  • 2010


  • S. B. Yuste, E. Abad, K. Lindenberg
  • Rev. E 82
  • 2010


  • J. A. Dix, A. S. Verkman
  • Rev. Biophys. 37
  • 2008
1 Excerpt


  • D. A. Murio
  • Math. Appl. 56
  • 2008
2 Excerpts


  • R. Klages
  • Radons, I.M. Sokolov (Eds.), Anomalous Transport…
  • 2008


  • R. L. Magin, O. Abdullah, D. Baleanu, X. J. Zhou, J. Magn
  • 190
  • 2008

Similar Papers

Loading similar papers…