A dynamical inconsistency of Horava gravity

@article{Henneaux2010ADI,
  title={A dynamical inconsistency of Horava gravity},
  author={Marc Henneaux and Axel Kleinschmidt and Gustavo Lucena G'omez},
  journal={Physical Review D},
  year={2010},
  volume={81},
  pages={064002}
}
The dynamical consistency of the nonprojectable version of Ho\ifmmode \check{r}\else \v{r}\fi{}ava gravity is investigated by focusing on the asymptotically flat case. It is argued that for generic solutions of the constraint equations the lapse must vanish asymptotically. We then consider particular values of the coupling constants for which the equations are tractable and in that case we prove that the lapse must vanish everywhere\char22{}and not only at infinity. Put differently, the… 

Lower-dimensional Horava-Lifshitz gravity

We consider Ho\ifmmode \check{r}\else \v{r}\fi{}ava\char21{}Lifshitz gravity in both $1+1$ and $2+1$ dimensions. These lower-dimensional versions of Ho\ifmmode \check{r}\else

The Hamiltonian dynamics of Hořava gravity

We consider the Hamiltonian formulation of Horava gravity in arbitrary dimensions, which has been proposed as a renormalizable gravity model for quantum gravity without the ghost problem. We study

Modified first-order Horava-Lifshitz gravity: Hamiltonian analysis of the general theory and accelerating FRW cosmology in power-law F(R) model

We propose the most general modified first-order Ho\ifmmode \check{r}\else \v{r}\fi{}ava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian

Universal horizons and Hawking radiation in nonprojectable 2d Hořava gravity coupled to a nonrelativistic scalar field

In this paper, we study the non-projectable 2d Ho\v{r}ava gravity coupled with a non-relativistic scalar field, where the coupling is in general non-minimal and of the form $f(\phi)R$, where

Lessons from the decoupling limit of Hořava gravity

We consider the so-called “healthy” extension of Hořava gravity in the limit where the Stuckelberg field decouples from the graviton. We verify the alleged strong coupling problem in this limit,

ON THE CONSISTENCY OF THE HOŘAVA THEORY

With the goal of giving evidence for the theoretical consistency of the Hořava theory, we perform a Hamiltonian analysis on a classical model suitable for analyzing its effective dynamics at large

Wormholes and naked singularities in the complete Hořava theory

We find the static spherically symmetric solutions (with vanishing shift function) of the complete nonprojectable Horava theory explicitly, writing the space-time metrics as explicit tensors in local

Models of non-relativistic quantum gravity: the good, the bad and the healthy

Hořava’s proposal for non-relativistic quantum gravity introduces a preferred time foliation of space-time which violates the local Lorentz invariance. The foliation is encoded in a dynamical scalar

Oscillating Bianchi IX universe in Hořava-Lifshitz gravity

We study a vacuum Bianchi IX universe in the context of Ho\v{r}ava-Lifshitz (HL) gravity. In particular, we focus on the classical dynamics of the universe and analyze how anisotropy changes the
...

References

SHOWING 1-10 OF 50 REFERENCES

On the extra mode and inconsistency of Hořava gravity

We address the consistency of Hořava's proposal for a theory of quantum gravity from the low-energy perspective. We uncover the additional scalar degree of freedom arising from the explicit breaking

Strong coupling in Horava gravity

By studying perturbations about the vacuum, we show that Horava gravity suffers from two different strong coupling problems, extending all the way into the deep infra-red. The first of these is

Strong coupling in Hoÿrava gravity

By studying perturbations about the vacuum, we show that Hoyrava gravity suffers from two different strong coupling problems, extending all the way into the deep infra-red. The first of these is

Spherically symmetric solutions in modified Hořava-Lifshitz gravity

We find spherically symmetric solutions in the modified Ho\ifmmode \check{r}\else \v{r}\fi{}ava-Lifshitz gravity proposed recently by Blas, Pujolas and Sibiryakov. The nonlinear equations of the

The mixmaster universe in Hořava–Lifshitz gravity

We consider spatially homogeneous (but generally non-isotropic) cosmologies in the recently proposed Hořava–Lifshitz gravity and compare them to those of general relativity using Hamiltonian methods.

Relativity without relativity

We give a derivation of general relativity (GR) and the gauge principle that is novel in presupposing neither spacetime nor the relativity principle. We consider a class of actions defined on

Cosmological perturbations in a healthy extension of Hořava gravity

In Hořava's theory of gravity, Lorentz symmetry is broken in exchange for renormalizability, but the original theory has been argued to be plagued with problems associated with a new scalar mode

Quantum Theory of Gravity. I. The Canonical Theory

Following an historical introduction, the conventional canonical formulation of general relativity theory is presented. The canonical Lagrangian is expressed in terms of the extrinsic and intrinsic

On Hořava-Lifshitz “black holes”

The most general spherically symmetric solution with zero shift is found in the non-projectable Hořava-Lifshitz class of theories with general coupling constants for the quadratic terms (with the