Corpus ID: 119143020

A differentiable monoid of smooth maps on Lie groupoids

@article{Amiri2017ADM,
  title={A differentiable monoid of smooth maps on Lie groupoids},
  author={H. Amiri and Alexander Schmeding},
  journal={arXiv: Group Theory},
  year={2017}
}
In this article we investigate a monoid of smooth mappings on the space of arrows of a Lie groupoid and its group of units. The group of units turns out to be an infinite-dimensional Lie group which is regular in the sense of Milnor. Furthermore, this group is closely connected to the group of bisections of the Lie groupoid. Under suitable conditions, i.e. the source map of the Lie groupoid is proper, one also obtains a differentiable structure on the monoid and can identify the bisection group… Expand
Lie groupoids of mappings taking values in a Lie groupoid
Endowing differentiable functions from a compact manifold to a Lie group with the pointwise group operations one obtains the so-called current groups and, as a special case, loop groups. These areExpand
The Lie group of vertical bisections of a regular Lie groupoid
Abstract In this note we construct an infinite-dimensional Lie group structure on the group of vertical bisections of a regular Lie groupoid. We then identify the Lie algebra of this group andExpand
Linking Lie groupoid representations and representations of infinite-dimensional Lie groups
The present paper links the representation theory of Lie groupoids and infinite-dimensional Lie groups. We show that smooth representations of Lie groupoids give rise to smooth representations ofExpand
Lie rackoids integrating Courant algebroids
We construct an infinite-dimensional Lie rackoid Y which hosts an integration of the standard Courant algebroid. As a set, $$Y={{\mathcal {C}}}^{\infty }([0,1],T^*M)$$ Y = C ∞ ( [ 0 , 1 ] , T ∗ M )Expand
The smooth Hom-stack of an orbifold
For a compact manifold M and a differentiable stack Open image in new window presented by a Lie groupoid X, we show the Hom-stack Open image in new window is presented by a Frechet–Lie groupoidExpand
Smooth loop stacks of differentiable stacks and gerbes
R\'esum\'e. Nous d\'efinissons un groupo\"ide de Fr\'echet-Lie Map(S^1,X) d'ana-foncteurs du cercle vers un groupo\"ide de Lie X. Ceci fournit une pr\'esentation du Hom-champ Hom(S^1,\cX), o\`u \cXExpand
Shape Analysis on Homogeneous Spaces: A Generalised SRVT Framework
Shape analysis is ubiquitous in problems of pattern and object recognition and has developed considerably in the last decade. The use of shapes is natural in applications where one wants to compareExpand

References

SHOWING 1-10 OF 40 REFERENCES
Re)constructing Lie groupoids from their bisections and applications to prequantisation
This paper is about the relation of the geometry of Lie groupoids over a fixed compact manifold and the geometry of their (infinite-dimensional) bisection Lie groups. In the first part of the paperExpand
Linking Lie groupoid representations and representations of infinite-dimensional Lie groups
The present paper links the representation theory of Lie groupoids and infinite-dimensional Lie groups. We show that smooth representations of Lie groupoids give rise to smooth representations ofExpand
FUNCTORIAL ASPECTS OF THE RECONSTRUCTION OF LIE GROUPOIDS FROM THEIR BISECTIONS
To a Lie groupoid over a compact base $M$ , the associated group of bisection is an (infinite-dimensional) Lie group. Moreover, under certain circumstances one can reconstruct the Lie groupoid fromExpand
The Lie group of bisections of a Lie groupoid
In this article, we endow the group of bisections of a Lie groupoid with compact base with a natural locally convex Lie group structure. Moreover, we develop thoroughly the connection to the algebraExpand
Towards a Lie theory of locally convex groups
Abstract.In this survey, we report on the state of the art of some of the fundamental problems in the Lie theory of Lie groups modeled on locally convex spaces, such as integrability of Lie algebras,Expand
Riemannian metrics on Lie groupoids
We introduce a notion of metric on a Lie groupoid, compatible with multipli- cation, and we study its properties. We show that many families of Lie groupoids admit such metrics, including theExpand
Infinite-dimensional Lie groups without completeness restrictions
We describe a setting of infinite-dimensional smooth (resp., analytic) Lie groups modelled on arbitrary, not necessarily sequentially complete, locally convex spaces, generalizing the framework ofExpand
Introduction to Foliations and Lie Groupoids
This book gives a quick introduction to the theory of foliations, Lie groupoids and Lie algebroids. An important feature is the emphasis on the interplay between these concepts: Lie groupoids form anExpand
Lie groups over non-discrete topological fields
We generalize the classical construction principles of infinite-dimensional real (and complex) Lie groups to the case of Lie groups over non-discrete topological fields. In particular, we discussExpand
STRONG TOPOLOGIES FOR SPACES OF SMOOTH MAPS WITH INFINITE-DIMENSIONAL TARGET
In this article we study two "strong" topologies for spaces of smooth functions from a finite-dimensional manifold to a (possibly infinite-dimensional) manifold modeled on a locally convex space.Expand
...
1
2
3
4
...