A decomposition of Bessel Bridges

@article{Pitman1982ADO,
  title={A decomposition of Bessel Bridges},
  author={Jim Pitman and Marc Yor},
  journal={Zeitschrift f{\"u}r Wahrscheinlichkeitstheorie und Verwandte Gebiete},
  year={1982},
  volume={59},
  pages={425-457}
}
  • J. Pitman, M. Yor
  • Published 1 December 1982
  • Mathematics
  • Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete
A TWO-PARAMETER FAMILY OF MEASURE-VALUED DIFFUSIONS WITH POISSON–DIRICHLET STATIONARY DISTRIBUTIONS* BY NOAH FORMAN†,
We give a pathwise construction of a two-parameter family of purelyatomic-measure-valued diffusions in which ranked masses of atoms are stationary with the Poisson–Dirichlet(α,θ) distributions, for α
A two-parameter family of measure-valued diffusions with Poisson-Dirichlet stationary distributions
We give a pathwise construction of a two-parameter family of purely-atomic-measure-valued diffusions in which ranked masses of atoms are stationary with the Poisson-Dirichlet$(\alpha,\theta)$
Diffusions on a space of interval partitions: construction from Bertoin’s ${\tt BES}_{0}(d)$, $d\in (0,1)$
In 1990, Bertoin constructed a measure-valued Markov process in the framework of a Bessel process of dimension between 0 and 1. In the present paper, we represent this process in a space of interval
Invariance principle for non-homogeneous random walks
We prove an invariance principle for a class of zero-drift spatially non-homogeneous random walks in $\mathbb{R}^d$, which may be recurrent in any dimension. The limit $\mathcal{X}$ is an elliptic
A path-valued Markov process indexed by the ancestral mass
A family of Feller branching diffusions $Z^x$, $x \ge 0$, with nonlinear drift and initial value $x$ can, with a suitable coupling over the {\em ancestral masses} $x$, be viewed as a path-valued
On exceptional times for generalized Fleming–Viot processes with mutations
If $$\mathbf Y$$Y is a standard Fleming–Viot process with constant mutation rate (in the infinitely many sites model) then it is well known that for each $$t>0$$t>0 the measure $$\mathbf Y_t$$Yt is
On the Laws of Total Local Times for h-Paths and Bridges of Symmetric Levy Processes
The joint law of the total local times at two levels for -paths of symmetric Levy processes is shown to admit an explicit representation in terms of the laws of the squared Bessel processes of
Parameter Estimation for the Square-Root Diffusions: Ergodic and Nonergodic Cases
This article deals with the problem of parameter estimation in the Cox-Ingersoll-Ross (CIR) model (X t ) t≥0. This model is frequently used in finance for example as a model for computing the
Non-equilibrium theory of the allele frequency spectrum.
Large deviations for squares of Bessel and Ornstein-Uhlenbeck processes
Abstract.Let (Xt(δ),t≥0) be the BESQδ process starting at δx. We are interested in large deviations as ${{\delta \rightarrow \infty}}$ for the family {δ−1Xt(δ),t≤T}δ, – or, more generally, for the
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 27 REFERENCES
Bessel diffusions as a one-parameter family of diffusion processes
O. Introduction By a Bessel diffusion process with index ~ (~ > 0), we mean a conservative onedimensional diffusion process on [0, o0) determined by the local generator
On time inversion of one-dimensional diffusion processes
Bessel processes and infinitely divisible laws
Sur les distributions de certaines fonctionnelles du mouvement brownien
© Springer-Verlag, Berlin Heidelberg New York, 1981, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec
Williams' characterisation of the brownian excursion law : proof and applications
© Springer-Verlag, Berlin Heidelberg New York, 1981, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec
Semi-Martingales et Grossissement d’une Filtration
...
1
2
3
...