A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case

@article{Eymard2010ACF,
  title={A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case},
  author={Robert Eymard and Thierry Gallou{\"e}t and Rapha{\`e}le Herbin and Jean-Claude Latch{\'e}},
  journal={Math. Comput.},
  year={2010},
  volume={79},
  pages={649-675}
}
In this paper, we propose a discretization for the (nonlinearized) compressible Stokes problem with an equation of state of the form p = ργ (where p stands for the pressure and ρ for the density). This scheme is based on Crouzeix-Raviart approximation spaces. The discretization of the momentum balance is obtained by the usual finite element technique. The discrete mass balance is obtained by a finite volume scheme, with an upwinding of the density, and two additional stabilization terms. We… CONTINUE READING

From This Paper

Topics from this paper.

Citations

Publications citing this paper.
Showing 1-10 of 13 extracted citations

A convergent FEM-DG method for the compressible Navier-Stokes equations

Numerische Mathematik • 2013
View 5 Excerpts
Highly Influenced

References

Publications referenced by this paper.
Showing 1-10 of 14 references

Latché. A discretization of phase mass balance in fractional step algorithms for the drift-flux model

L. Gastaldo, R. Herbin, J.-C
IMA Journal of Numerical Analysis, • 2009

Latché. An entropy-preserving finite element–finite volume pressure correction scheme for the drift-flux model

L. Gastaldo, R. Herbin, J.-C
2009

Entropy estimate for the approximation of the compressible barotropic Navier - Stokes equations using a collocated finite volume scheme

L. Gastaldo T. Gallouët, R. Herbin, J.-C. Latché
2008

Entropy estimate for the approximation of the compressible barotropic Navier-Stokes equations using a collocated finite volume

R. Eymard, R. Herbin
scheme. in preparation, • 2008

Une méthode de pénalité-projection pour les écoulements dilatables

M. Jobelin, B. Piar, P. Angot, J.-C. Latché
Revue Européene de mécanique numérique, • 2008

Introduction to the mathematical theory of compressible flow. Volume 27 of Oxford Lecture Series in Mathematics and its Applications

A. Novotný, I. Straškraba
2004

Similar Papers

Loading similar papers…