A constructive approach to robust chaos using invariant manifolds and expanding cones
@article{Glendinning2021ACA, title={A constructive approach to robust chaos using invariant manifolds and expanding cones}, author={Paul Glendinning and David J. W. Simpson}, journal={Discrete \& Continuous Dynamical Systems}, year={2021} }
Chaotic attractors in the two-dimensional border-collision normal form (a piecewise-linear map) can persist throughout open regions of parameter space. Such robust chaos has been established rigorously in some parameter regimes. Here we provide formal results for robust chaos in the original parameter regime of [S. Banerjee, J.A. Yorke, C. Grebogi, Robust Chaos, Phys. Rev. Lett. 80(14):3049-3052, 1998]. We first construct a trapping region in phase space to prove the existence of a topological…
7 Citations
Chaos in the border-collision normal form: A computer-assisted proof using induced maps and invariant expanding cones
- MathematicsApplied Mathematics and Computation
- 2022
Robust Devaney chaos in the two-dimensional border-collision normal form.
- MathematicsChaos
- 2022
The collection of all non-degenerate, continuous, two-piece, piecewise-linear maps on R2 can be reduced to a four-parameter family known as the two-dimensional border-collision normal form. We prove…
Renormalisation of the two-dimensional border-collision normal form
- Physics
- 2021
We study the two-dimensional border-collision normal form (a four-parameter family of continuous, piecewise-linear maps on R2) in the robust chaos parameter region of [S. Banerjee, J.A. Yorke, C.…
Detecting invariant expanding cones for generating word sets to identify chaos in piecewise-linear maps
- MathematicsJournal of Difference Equations and Applications
- 2022
We show how the existence of three objects, $\Omega_{\rm trap}$, ${\bf W}$, and $C$, for a continuous piecewise-linear map $f$ on $\mathbb{R}^N$, implies that $f$ has a topological attractor with a…
On the difficulty of learning chaotic dynamics with RNNs
- Computer Science
- 2021
It is mathematically proved that RNNs producing stable equilibrium or cyclic behavior have bounded gradients, whereas the gradients of RNN's with chaotic dynamics always diverge, and ways of how to optimize the training process on chaotic data according to the system’s Lyapunov spectrum, regardless of the employed RNN architecture are suggested.
How to train RNNs on chaotic data?
- Computer ScienceArXiv
- 2021
It is mathematically prove that RNNs producing stable equilibrium or cyclic behavior have bounded gradients, whereas the gradients of RNN's with chaotic dynamics always diverge, and is offered an effective yet simple training technique for chaotic data and guidance on how to choose relevant hyperparameters according to the Lyapunov spectrum.
H OW TO TRAIN RNN S ON CHAOTIC DATA ?
- Computer Science
- 2021
It is mathematically prove that RNNs producing stable equilibrium or cyclic behavior have bounded gradients, whereas the gradients of RNN's with chaotic dynamics always diverge, and is offered an effective yet simple training technique for chaotic data and guidance on how to choose relevant hyperparameters according to the Lyapunov spectrum.
References
SHOWING 1-10 OF 41 REFERENCES
Robust chaos and border-collision bifurcations in non-invertible piecewise-linear maps
- Mathematics
- 2005
This paper investigates border-collision bifurcations in piecewise-linear planar maps that are non-invertible in one region. Maps of this type arise as normal forms for grazing–sliding bifurcations…
Center bifurcation for Two-Dimensional Border-Collision Normal Form
- MathematicsInt. J. Bifurc. Chaos
- 2008
It is shown how periodicity regions in the parameter space differ from Arnold tongues occurring in smooth models in case of the Neimark–Sacker bifurcation, how so-called dangerous border-collision bIfurcations may occur, as well as multistability.
Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation.
- MathematicsChaos
- 2006
The present article reports the first experimental verification of the direct transition to quasiperiodicity through a border-collision bifurcation in the two-dimensional piecewise-linear normal form map.
Multichaos from Quasiperiodicity
- PhysicsSIAM J. Appl. Dyn. Syst.
- 2017
A simple 2-dimensional paradigm for multichaos is presented, in which a quasiperiodic orbit plays the key role, replacing the large hyperbolic set.
Ergodic theory of chaos and strange attractors
- Physics
- 1985
Physical and numerical experiments show that deterministic noise, or chaos, is ubiquitous. While a good understanding of the onset of chaos has been achieved, using as a mathematical tool the…
Introduction to Chaotic Dynamical Systems
- Computer Science
- 1992
This thesis develops some of the current definitions of chaos and discusses several quantitative measures of chaos, and serves as a complement to the work done by Philip Beaver, which details chaotic dynamics for discrete systems.
Robust Chaos
- Engineering
- 1998
It has been proposed to make practical use of chaos in communication [1], in enhancing mixing in chemical processes [2] and in spreading the spectrum of switch-mode power suppies to avoid…
Neimark-Sacker Bifurcations in Planar, Piecewise-Smooth, Continuous Maps
- MathematicsSIAM J. Appl. Dyn. Syst.
- 2008
The multipliers of a fixed point of a piecewise-smooth, continuous map may change discontinuously as the fixed point crosses a discontinuity under smooth variation of parameters, similar to the Neimark–Sacker bifurcation of a smooth map.
On Devaney's definition of chaos
- Mathematics
- 1992
Chaotic dynamical systems have received a great deal of attention in recent years (see for instance [2], [3]). Although there has been no universally accepted mathematical definition of chaos, the…