A comprehensive statistical classifier of foci in the cell transformation assay for carcinogenicity testing.

Abstract

The identification of the carcinogenic risk of chemicals is currently mainly based on animal studies. The in vitro Cell Transformation Assays (CTAs) are a promising alternative to be considered in an integrated approach. CTAs measure the induction of foci of transformed cells. CTAs model key stages of the in vivo neoplastic process and are able to detect both genotoxic and some non-genotoxic compounds, being the only in vitro method able to deal with the latter. Despite their favorable features, CTAs can be further improved, especially reducing the possible subjectivity arising from the last phase of the protocol, namely visual scoring of foci using coded morphological features. By taking advantage of digital image analysis, the aim of our work is to translate morphological features into statistical descriptors of foci images, and to use them to mimic the classification performances of the visual scorer to discriminate between transformed and non-transformed foci. Here we present a classifier based on five descriptors trained on a dataset of 1364 foci, obtained with different compounds and concentrations. Our classifier showed accuracy, sensitivity and specificity equal to 0.77 and an area under the curve (AUC) of 0.84. The presented classifier outperforms a previously published model.

DOI: 10.1016/j.tiv.2017.04.030

Cite this paper

@article{Callegaro2017ACS, title={A comprehensive statistical classifier of foci in the cell transformation assay for carcinogenicity testing.}, author={Giulia Callegaro and Kasja Malkoc and Raffaella Corvi and Chiara Urani and Federico M. Stefanini}, journal={Toxicology in vitro : an international journal published in association with BIBRA}, year={2017} }