A colony-stimulating factor 1 (CSF-1) receptor/platelet-derived growth factor-beta receptor gene fusion confers CSF-1 independence and tumorigenicity on a c-myc-immortalized monocyte cell line.

Abstract

Monocytes and macrophages express the receptor for the hematopoietic growth factor colony-stimulating factor 1 (CSF-1) and require this factor for growth in culture. A murine monocyte tumor cell line that lacks the usual requirement for CSF-1 was isolated. On the basis of the similarity of the structures of the CSF-1 and platelet-derived growth factor (PDGF) receptors and because monocytes normally secrete PDGF, we analyzed the tumor cell line for anomalous expression of the PDGF-R beta gene. Two different cDNAs that each contain sequences corresponding to the complete coding sequence of PDGF-R beta fused (in frame) to the amino-terminal half of the CSF-1 receptor were isolated. Introduction of these PDGF-R beta-related cDNAs into two partially transformed, CSF-1-dependent monocyte cell lines resulted in autonomous growth and cell transformation. These monocyte cell lines exhibit a novel form of growth factor receptor activation that can lead to oncogenic growth in collaboration with the c-myc oncogene.

Cite this paper

@article{Eccles1992ACF, title={A colony-stimulating factor 1 (CSF-1) receptor/platelet-derived growth factor-beta receptor gene fusion confers CSF-1 independence and tumorigenicity on a c-myc-immortalized monocyte cell line.}, author={M R Eccles and Frank J King and Michael D. Cole}, journal={Molecular and cellular biology}, year={1992}, volume={12 1}, pages={386-93} }