# A cogroupoid associated to preregular forms

@inproceedings{Huang2021ACA, title={A cogroupoid associated to preregular forms}, author={Hongdi Huang and Van C. Nguyen and Charlotte Ure and Kent B. Vashaw and Padmini Veerapen and Xingting Wang}, year={2021} }

. We construct a family of cogroupoids associated to preregular forms and recover the Morita– Takeuchi equivalence for Artin–Schelter regular algebras of dimension two, observed by Raedschelders and Van den Bergh. Moreover, we study the 2-cocycle twists of pivotal analogues of these cogroupoids, by developing a categorical description of preregularity in any tensor category that has a pivotal structure.

## References

SHOWING 1-10 OF 42 REFERENCES

### HOPF-GALOIS OBJECTS AND COGROUPOIDS

- Mathematics
- 2010

We survey some aspects of the theory of Hopf-Galois objects that may studied advantageously by using the language of cogroupoids. These are the notes for a series of lectures given at Cordobá…

### Higher Frobenius-Schur indicators for pivotal categories

- Mathematics
- 2014

We define higher Frobenius-Schur indicators for objects in linear pivotal monoidal categories. We prove that they are category invariants, and take values in the cyclotomic integers. We also define a…

### On quantum groups associated to a pair of preregular forms

- MathematicsJournal of Noncommutative Geometry
- 2019

We define the universal quantum group $\mathcal{H}$ that preserves a pair of Hopf comodule maps, whose underlying vector space maps are preregular forms defined on dual vector spaces. This…

### The Manin Hopf algebra of a Koszul Artin-Schelter regular algebra is quasi-hereditary

- Mathematics
- 2015

### Turning monoidal categories into strict ones.

- Mathematics
- 2001

It is well-known that every monoidal category is equivalent to a strict one. We show that for categories of sets with additional structure (which we define quite formally below) it is not even…

### On the classification of Galois objects over the quantum group of a nondegenerate bilinear form

- Mathematics
- 2006

We study Galois and bi-Galois objects over the quantum group of a nondegenerate bilinear form, including the quantum group $${\mathcal{O}_q}$$ (SL(2)). We obtain the classification of these objects…

### The Quantum Group of a Preregular Multilinear Form

- Mathematics
- 2013

We describe the universal quantum group preserving a preregular multilinear form, by means of an explicit finite presentation of the corresponding Hopf algebra.

### Non-noetherian regular rings of dimension 2

- Mathematics
- 1998

. We study connected, not necessarily noetherian, regular rings of global dimension 2.