A categorification of the Temperley-Lieb algebra and Schur quotients of U(sl2) via projective and Zuckerman functors

@inproceedings{Frenkel1999ACO,
  title={A categorification of the Temperley-Lieb algebra and Schur quotients of U(sl2) via projective and Zuckerman functors},
  author={Igor Frenkel},
  year={1999}
}
2.1. U̇(sl2) and its representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 2.1.1. Algebra U̇(sl2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 2.1.2. Representations of U̇(sl2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 2.2. Temperley-Lieb algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 2.3. The category of… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 21 references

Jr

  • A. W. Knapp, D. A. Vogan
  • Cohomological Induction and Unitary…
  • 1995
Highly Influential
3 Excerpts

A combinatorial description of knotted surfaces and their isotopies

  • CRS J.S. Carter, J. H. Rieger, M. Saito
  • Adv. Math
  • 1997

Graphical calculus, canonical bases and Kazhdan-Lusztig theory

  • M. Khovanov
  • Thesis, Yale University
  • 1997

2-categories and 2-knots

  • J. Fischer
  • Duke Math J
  • 1994

Temperley-Lieb Recoupling Theory and Invariants of 3manifolds

  • L. H. Kauffman, S. Lins
  • Ann. of Math. Studies 134, Princeton U. Press…
  • 1994
1 Excerpt

Introduction to Quantum Groups

  • G. Lusztig
  • Birkhäuser, Boston
  • 1993
2 Excerpts

Reidemeister moves for surface isotopies and their interpretation as moves to movies

  • J. S. Carter, M. Saito
  • J. Knot Theory Ramifications
  • 1993