A canonical decomposition for quadratic forms with applications to monotone convergence theorems

@article{Simon1978ACD,
  title={A canonical decomposition for quadratic forms with applications to monotone convergence theorems},
  author={B. Simon},
  journal={Journal of Functional Analysis},
  year={1978},
  volume={28},
  pages={377-385}
}
  • B. Simon
  • Published 1978
  • Mathematics
  • Journal of Functional Analysis
  • We prove monotone convergence theorems for quadratic forms on a Hilbert space which improve existing results. The main tool is a canonical decomposition for any positive quadratic form h = hr + hs where hr is characterized as the largest closable form smaller than h. There is also a systematic discussion of nondensely defined forms. 
    212 Citations
    Monotone convergence theorems for semi-bounded operators and forms with applications
    • 18
    • PDF
    Monotone Convergence in Complete Metric Spaces Bachelor ’ s Project Mathematics
    • 2019
    • PDF
    On Bilinear Forms from the Point of View of Generalized Effect Algebras
    • 3
    • PDF
    Smooth perturbations of regular Dirichlet forms
    • 25
    • Highly Influenced
    • PDF
    Sectorial forms and degenerate differential operators
    • 74
    • PDF

    References

    SHOWING 1-7 OF 7 REFERENCES
    On rings of operators, III, Ann
    • of Math
    • 1940
    Perturbation theory for linear operators
    • 15,970
    On Rings of Operators. III
    • 372
    On rings of operators, III, Ann. of Math
    • On rings of operators, III, Ann. of Math
    • 1940
    Rings of operators
    • 812
    Classical boundary value methods in modern mathematical physics
    • Advances in Math