# A bound on the Wasserstein-2 distance between linear combinations of independent random variables

@article{Arras2019ABO, title={A bound on the Wasserstein-2 distance between linear combinations of independent random variables}, author={B. Arras and E. Azmoodeh and Guillaume Poly and Yvik Swan}, journal={Stochastic Processes and their Applications}, year={2019}, volume={129}, pages={2341-2375} }

Abstract We provide a bound on a distance between finitely supported elements and general elements of the unit sphere of l 2 ( N ∗ ) . We use this bound to estimate the Wasserstein-2 distance between random variables represented by linear combinations of independent random variables. Our results are expressed in terms of a discrepancy measure related to Nourdin–Peccati’s Malliavin–Stein method. The main application is towards the computation of quantitative rates of convergence to elements of… Expand

#### 15 Citations

On the Rate of Convergence to a Gamma Distribution on Wiener Space

- Mathematics
- 2018

In [NP09a], Nourdin and Peccati established a neat characterization of Gamma approximation on a fixed Wiener chaos in terms of convergence of only the third and fourth cumulants. In this paper, we… Expand

Optimal Gamma Approximation on Wiener Space

- Mathematics
- 2019

In \cite{n-p-noncentral}, Nourdin and Peccati established a neat characterization of Gamma approximation on a fixed Wiener chaos in terms of convergence of only the third and fourth cumulants. In… Expand

Stein characterizations for linear combinations of gamma random variables

- Mathematics
- 2017

In this paper we propose a new, simple and explicit mechanism allowing to derive Stein operators for random variables whose characteristic function satisfies a simple ODE. We apply this to study… Expand

Some new Stein operators for product distributions

- Mathematics
- 2019

We provide a general result for finding Stein operators for the product of two independent random variables whose Stein operators satisfy a certain assumption, extending a recent result of Gaunt,… Expand

PR ] 6 F eb 2 01 9 Optimal Gamma Approximation on Wiener Space

- 2019

In [NP09a], Nourdin and Peccati established a neat characterization of Gamma approximation on a fixed Wiener chaos in terms of convergence of only the third and fourth cumulants. In this paper, we… Expand

Stein operators for variables form the third and fourth Wiener chaoses

- Mathematics
- 2018

Abstract Let Z be a standard normal random variable and let H n denote the n th Hermite polynomial. In this note, we obtain Stein equations for the random variables H 3 ( Z ) and H 4 ( Z ) , which… Expand

Malliavin-Stein Method: a Survey of Recent Developments

- Mathematics
- 2018

Initiated around the year 2007, the Malliavin-Stein approach to probabilistic approximations combines Stein's method with infinite-dimensional integration by parts formulae based on the use of… Expand

Inequalities for integrals of modified Bessel functions and expressions involving them

- Mathematics
- 2017

Simple inequalities are established for some integrals involving the modified Bessel functions of the first and second kind. In most cases, we show that we obtain the best possible constant or that… Expand

Wasserstein and Kolmogorov Error Bounds for Variance-Gamma Approximation via Stein’s Method I

- Mathematics
- 2017

The variance-gamma (VG) distributions form a four-parameter family that includes as special and limiting cases the normal, gamma and Laplace distributions. Some of the numerous applications include… Expand

On algebraic Stein operators for Gaussian polynomials

- Mathematics
- 2019

The first essential ingredient to build up Stein's method for a continuous target distribution is to identify a so-called \textit{Stein operator}, namely a linear differential operator with… Expand

#### References

SHOWING 1-10 OF 42 REFERENCES

Convergence Towards Linear Combinations of Chi-Squared Random Variables: A Malliavin-Based Approach

- Mathematics
- 2014

We investigate the problem of finding necessary and sufficient conditions for convergence in distribution towards a general finite linear combination of independent chi-squared random variables,… Expand

Nourdin–Peccati analysis on Wiener and Wiener–Poisson space for general distributions

- Mathematics
- 2012

Given a reference random variable, we study the solution of its Stein equation and obtain universal bounds on its first and second derivatives. We then extend the analysis of Nourdin and Peccati by… Expand

Malliavin-Stein method for variance-gamma approximation on Wiener space

- Mathematics
- 2014

We combine Malliavin calculus with Stein's method to derive bounds for the Variance-Gamma approximation of functionals of isonormal Gaussian processes, in particular of random variables living inside… Expand

Stein’s method on Wiener chaos

- Mathematics
- 2007

We combine Malliavin calculus with Stein’s method, in order to derive explicit bounds in the Gaussian and Gamma approximations of random variables in a fixed Wiener chaos of a general Gaussian… Expand

Stein’s method for invariant measures of diffusions via Malliavin calculus☆

- Mathematics
- 2011

Given a random variable F regular enough in the sense of the Malliavin calculus, we are able to measure the distance between its law and any probability measure with a density function which is… Expand

Stein operators for product distributions, with applications

- Mathematics
- 2016

We build upon recent advances on the distributional aspect of Stein's method to propose a novel and flexible technique for computing Stein operators for random variables that can be written as… Expand

On Stein's method for products of normal random variables and zero bias couplings

- Mathematics
- 2013

In this paper we extend Stein's method to the distribution of the product of $n$ independent mean zero normal random variables. A Stein equation is obtained for this class of distributions, which… Expand

Weak convergence on Wiener space: targeting the first two chaoses

- Mathematics
- 2017

We consider sequences of random variables living in a finite sum of Wiener chaoses. We find necessary and sufficient conditions for convergence in law to a target variable living in the sum of the… Expand

The optimal fourth moment theorem

- Mathematics
- 2013

We compute the exact rates of convergence in total variation associated with the ‘fourth moment theorem’ by Nualart and Peccati (2005), stating that a sequence of random variables living in a fixed… Expand

Stein's method for comparison of univariate distributions

- Mathematics
- 2014

We propose a new general version of Stein's method for univariate distributions. In particular we propose a canonical definition of the Stein operator of a probability distribution {which is based on… Expand