A ZERO DENSITY RESULT FOR THE RIEMANN ZETA FUNCTION

@inproceedings{Kadiri2013AZD,
  title={A ZERO DENSITY RESULT FOR THE RIEMANN ZETA FUNCTION},
  author={H. Kadiri and Nathan Ng},
  year={2013}
}
N(σ, T ) ≤ 4.9(3T ) 8 3 (1−σ) log5−2σ(T ) + 51.5 log T, for σ ≥ 0.52 and T ≥ 2000. We discuss a generalization of the method used in these two results which yields an explicit bound of a similar shape while also improving the constants. Furthermore, we present the effect of these improvements on explicit estimates for the prime counting function ψ(x). This is joint work with Habiba Kadiri and Nathan Ng. 

From This Paper

Figures, tables, and topics from this paper.

Explore Further: Topics Discussed in This Paper

Citations

Publications citing this paper.
Showing 1-3 of 3 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 20 references

Autour de la fonction qui compte le nombre de nombres premiers Thése

P. Dusart
Universit de Limoges • 1998
View 7 Excerpts
Highly Influenced

On Snirelman’s constant

O. Ramaré
Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 • 1995
View 12 Excerpts
Highly Influenced

Explicit Estimate on Primes between Consecutive Cubes

YUAN-YOU FU-RUI
2008
View 7 Excerpts
Highly Influenced

An explicit upper bound for the Riemann Zeta-function near the line σ = 1

Y. Cheng
Rocky Mountain J. Math. 29, Number 1 • 1999
View 7 Excerpts
Highly Influenced

Explicit bounds for some functions of prime numbers

J. B. Rosser
Amer. J. Math. 63 • 1941
View 7 Excerpts
Highly Influenced

Computational verification of the Riemann hypothesis Conference in Number Theory in Honour of Professor

S. Wedeniwski - Zetagrid
http://www.zetagrid.net/zeta/math/zeta.result.100billion.zeros.html Department of Mathematics and Computer Science, • 2003
View 3 Excerpts
Highly Influenced

Estimates of some functions over primes without RH

P. Dusart
arXiv preprint arXiv:1002.0442 • 2010
View 1 Excerpt

Une région explicit sans zéros pour la fonctin ζ de Riemann

H. Kadiri
Acta Arith • 2005
View 1 Excerpt