A Weak Unique Continuation Theorem

@inproceedings{Br1999AWU,
  title={A Weak Unique Continuation Theorem},
  author={Christian B{\"a}r},
  year={1999}
}
Let D be a self-adjoint differential operator of Dirac type acting on sections in a vector bundle over a closed Riemannian manifold M . Let H be a closed D-invariant subspace of the Hilbert space of square integrable sections. Suppose D restricted to H is semibounded. We show that every element ψ ∈ H has the weak unique continuation property, i.e. if ψ vanishes on a nonempty open subset of M , then it vanishes on all of M . 1991 Mathematics Subject Classification: 58G03, 35B05 

From This Paper

Topics from this paper.
1 Citations
10 References
Similar Papers

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-10 of 10 references

Unique continuation property for Dirac operators

  • B. Booß-Bavnbek
  • revisited, Preprint, Roskilde University
  • 1999
1 Excerpt

Quantum field theory

  • L. H. Ryder
  • 2nd ed., Cambridge University Press, Cambridge
  • 1996

Elliptic boundary problems for Dirac operators

  • B. Booß-Bavnbek, K. P. Wojciechowski
  • Birkhäuser, Boston Basel Berlin
  • 1993
1 Excerpt

The Dirac equation

  • B. Thaller
  • Springer-Verlag, Berlin Heidelberg New York
  • 1992

Elliptic operators

  • J. Roe
  • topology and asymptotic methods, Longman Scient…
  • 1988

Unique continuation in geometry

  • J. Kazdan
  • Comm. Pure Appl. Math. 41
  • 1988
1 Excerpt

Positive scalar curvature and the Dirac operator on complete Riemannian manifolds

  • M. Gromov, H. B. Lawson
  • Publ. Math. Inst. Hautes Etud. Sci. 58
  • 1983
1 Excerpt

A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order

  • N. Aronszajn
  • J. Math. Pures Appl. 36
  • 1957
1 Excerpt

Similar Papers

Loading similar papers…