A REINFORCEMENT LEARNING METHODFOR AN AUTONOMOUS ROBOTPierre

@inproceedings{Jou1996ARL,
  title={A REINFORCEMENT LEARNING METHODFOR AN AUTONOMOUS ROBOTPierre},
  author={Yves Glorennec Lionel Jou},
  year={1996}
}
  • Yves Glorennec Lionel Jou
  • Published 1996
This paper presents a fuzzy navigation system for an autonomous robot. A behavior-based control system provides the robot with the adaptibility necessary for coping with a dynamically changing environment. Moreover, a reinforcement learning method is used for on-line rule optimization. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 10 references

Apprentissage de syst emes d'inf erence oue par des m ethodes de programmation dy- namique adaptative

  • L. Jou e
  • Proc. of LFA'95,
  • 1995

Fuzzy logic-based navigation for an autonomous robot

  • PY Glorennec
  • Proc. of IFAC Workshop ICASAV,
  • 1995
1 Excerpt

Fuzzy Q-Learning and Dynamical Fuzzy Q-Learning

  • PY Glorennec
  • Proc. of FUZZ-IEEE'94,
  • 1994
1 Excerpt

Fuzzy logic-based navigation controller for an autonomous mobile robot

  • K. Liu, F. Lewis
  • Proc. of SMC'94,
  • 1994

KamikawaK. \Obstacle avoidance based on approximate reasoning for mobile robots

  • A. Kato
  • Proc. of Int. Workshop on Intel. Robots ans…
  • 1989

\ Automatic generation of fuzzy control rules by machine learning meth

  • C. HsuS.-, J. Hsu, I. Chiang

Similar Papers

Loading similar papers…