# A Quantum Algorithm for the Hamiltonian NAND Tree

@article{Farhi2008AQA, title={A Quantum Algorithm for the Hamiltonian NAND Tree}, author={Edward Farhi and Jeffrey Goldstone and Sam Gutmann}, journal={Theory Comput.}, year={2008}, volume={4}, pages={169-190} }

We give a quantum algorithm for the binary NAND tree problem in the Hamil- tonian oracle model. The algorithm uses a continuous time quantum walk with a running time proportional to p N. We also show a lower bound of W( p N) for the NAND tree problem in the Hamiltonian oracle model.

#### Figures and Topics from this paper

#### 264 Citations

Discrete-Query Quantum Algorithm for NAND Trees

- Mathematics, Physics
- Theory Comput.
- 2009

It is pointed out that the algorithm given by Edward Farhi, Jeffrey Goldstone, and Sam Gutmann can be converted into an algorithm using N^[1/2 + o(1)] queries in the conventional (discrete) quantum query model. Expand

A nearly optimal discrete query quantum algorithm for evaluating NAND formulas

- Mathematics, Physics
- 2007

We present an O(\sqrt{N}) discrete query quantum algorithm for evaluating balanced binary NAND formulas and an O(N^{{1/2}+O(\frac{1}{\sqrt{\log N}})}) discrete query quantum algorithm for evaluating… Expand

Universal computation by quantum walk.

- Computer Science, Medicine
- Physical review letters
- 2009

It is shown that quantum walk can be regarded as a universal computational primitive, with any quantum computation encoded in some graph, even if the Hamiltonian is restricted to be the adjacency matrix of a low-degree graph. Expand

Recent Developments in Quantum Algorithms and Complexity

- Computer Science
- DCFS
- 2014

This work surveys several recent developments in quantum algorithms and complexity, including Reichardt's characterization of quantum query algorithms via span programs and exact quantum algorithms with superlinear advantage over the best classical algorithm. Expand

Quantum Random Walks - New Method for Designing Quantum Algorithms

- Mathematics, Computer Science
- SOFSEM
- 2008

This talk will describe the quantum walk method for designing search algorithms and show several of its applications. Expand

Faster quantum algorithm for evaluating game trees

- Computer Science, Physics
- SODA '11
- 2011

An O(√n log n)-query quantum algorithm for evaluating size-n AND-OR formulas and a novel tensor-product span program composition method, which generates graphs with vertices corresponding to minimal zero-certificates is given. Expand

ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N ON A QUANTUM COMPUTER∗

- 2010

Consider the problem of evaluating an AND-OR formula on an N-bit black-box input. We present a bounded-error quantum algorithm that solves this problem in time N1/2+o(1). In particular, approximately… Expand

Time Independent Universal Computing with Spin Chains: Quantum Plinko Machine

- Physics
- 2015

We present a scheme for universal quantum computing using XY Heisenberg spin chains. Information is encoded into packets propagating down these chains, and they interact with each other to perform… Expand

Quantum Proofs for Classical Theorems

- Computer Science, Mathematics
- Theory Comput.
- 2009

This paper surveys results and the quantum toolbox they use in diverse classical (non-quantum) areas, such as coding theory, communication complexity, and polynomial approximations. Expand

Efficient algorithms in quantum query complexity

- Mathematics, Computer Science
- 2014

These algorithms are a novel application of the quantum walk search framework and give improved upper bounds for several subgraph-finding problems and study the quantum query complexity of matrix multiplication and related problems over rings, semirings, and the Boolean semiring in particular. Expand

#### References

SHOWING 1-10 OF 17 REFERENCES

Discrete-Query Quantum Algorithm for NAND Trees

- Mathematics, Physics
- Theory Comput.
- 2009

It is pointed out that the algorithm given by Edward Farhi, Jeffrey Goldstone, and Sam Gutmann can be converted into an algorithm using N^[1/2 + o(1)] queries in the conventional (discrete) quantum query model. Expand

Lower Bounds on Quantum Query Complexity

- Computer Science, Mathematics
- Bull. EATCS
- 2005

This paper discusses here what quantum computers cannot do, and specifically how to prove limits on their computational power. Expand

Quantum Algorithms for Evaluating Min-MaxTrees

- Mathematics, Computer Science
- TQC
- 2008

A bounded-error quantum algorithm for evaluating Min - Max trees with N = 1 + o(1) queries, where N is the size of the tree and the allowable queries are comparisons of the form [x j k ]. Expand

Span-program-based quantum algorithm for evaluating formulas

- Computer Science, Mathematics
- STOC
- 2008

A quantum algorithm for evaluating formulas over an extended gate set, including all two- and three-bit binary gates (e.g., NAND, 3-majority), generalizes the optimal quantum AND-OR formula evaluation algorithm and is optimal for evaluating the balanced ternary majority formula. Expand

ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N1/2+o(1) ON A QUANTUM COMPUTER

- Mathematics
- 2010

Consider the problem of evaluating an AND-OR formula on an N-bit black-box input. We present a bounded-error quantum algorithm that solves this problem in time N 1/2+o(1) . In particular,… Expand

Quantum computation and decision trees

- Physics
- 1998

Many interesting computational problems can be reformulated in terms of decision trees. A natural classical algorithm is to then run a random walk on the tree, starting at the root, to see if the… Expand

Any AND-OR Formula of Size N Can Be Evaluated in Time N1/2+o(1) on a Quantum Computer

- Mathematics, Computer Science
- SIAM J. Comput.
- 2010

A bounded-error quantum algorithm that solves the problem of evaluating an AND-OR formula on an N-bit black-box input in time and in particular, approximately balanced formulas can be evaluated in O(\sqrt{N}) queries, which is optimal. Expand

A lower bound on the quantum query complexity of read-once functions

- Computer Science, Mathematics
- Electron. Colloquium Comput. Complex.
- 2002

A lower bound of Ω(√n) is established on the bounded-error quantum query complexity of read-once Boolean functions by induction on the number of variables, where the induction step involves a careful choice of weights depending on f to optimize the lower bound attained. Expand

Hamiltonian Oracles

- Physics
- 2006

Hamiltonian oracles are the continuum limit of the standard unitary quantum oracles. In this limit, the problem of finding the optimal query algorithm can be mapped into the problem of finding… Expand

Any AND-OR Formula of Size N can be Evaluated in time N^{1/2 + o(1)} on a Quantum Computer

- Mathematics, Computer Science
- 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07)
- 2007

It follows that the (2-o(1))th power of the quantum query complexity is a lower bound on the formula size, almost solving in the positive an open problem posed by Laplante, Lee and Szegedy. Expand