A POWER OF A MEROMORPHIC FUNCTION SHARING ONE VALUE WITH ITS DERIVATIVE

@inproceedings{Majumder2017APO,
  title={A POWER OF A MEROMORPHIC FUNCTION SHARING ONE VALUE WITH ITS DERIVATIVE},
  author={S B Majumder},
  year={2017}
}
Let f be a non-constant meromorphic function, n, k be two positive integers and a(z)( 6≡ 0,∞) be a meromorphic small function of f . Suppose that f − a and (f)−a share the value 0 CM. If either (1) n ≥ k+1 and N(r,∞; f) = S(r, f), or (2) n > k + 1 and N(r,∞; f) = λ T (r, f)(λ ∈ [0, 1)), then f ≡ (f) and f assume the form f(z) = ce λ n , where c is a nonzero constant and λ = 1. This result shows that Brück conjecture is true for meromorphic function when F = f with N(r,∞; f) = S(r, f) and n ≥ 2. 

References

Publications referenced by this paper.
SHOWING 1-10 OF 15 REFERENCES

A power of a meromorphic function sharing a small function with its derivative

  • Jilong Zhang, Lianzhong Yang
  • Ann. Acad. Sci. Fen. Math
  • 2009
Highly Influential
14 Excerpts

Entire functions that share finite values with their derivatives

  • L. Z. Yang
  • Bull. Aust. Math. Soc
  • 1990
Highly Influential
13 Excerpts

Meromorphe Funktionen, die mit ihrer ersten und zweiten Ableitung einen endlichen Wert teilen

  • E. Mues, N. Steinmetz
  • Complex Var. Theory Appl
  • 1986
Highly Influential
2 Excerpts

A note on Hayman’s problem and sharing value

  • Y. Li
  • Proc. Japan Acad. Ser. A
  • 2014
1 Excerpt

Results on a question of Zhang and Yang

  • L. Sheng, G. Zongsheng
  • Acta Math. Sci
  • 2012
2 Excerpts

Non-existence of meromorphic solutions of Fermat type functional equation

  • Lian-Zhong Yang, Ji-Long Zhang
  • Aequations Math
  • 2008
2 Excerpts

Entire functions that share one value with one or two of their derivatives

  • G. G. Gundersen, L. Z. Yang
  • J. Math. Anal. Appl
  • 1998
3 Excerpts

On entire functions which share one value CM with their first derivative

  • R. Brück
  • Results Math
  • 1996
3 Excerpts

Similar Papers

Loading similar papers…