A P ] 2 4 Ja n 20 05 The Cauchy problem for a Schrödinger-Korteweg-de Vries system with rough data

@inproceedings{Pecher2005AP,
  title={A P ] 2 4 Ja n 20 05 The Cauchy problem for a Schr{\"o}dinger-Korteweg-de Vries system with rough data},
  author={Hartmut Pecher},
  year={2005}
}
  • Hartmut Pecher
  • Published 2005
The Cauchy problem for a coupled system of the Schrödinger and the KdV equation is shown to be globally well-posed for data with infinite energy. The proof uses refined bilinear Strichartz type estimates and the I-method introduced by Colliander, Keel, Staffilani, Takaoka, and Tao. 

From This Paper

Topics from this paper.

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-10 of 17 references

New applications of the Fourier restriction norm method to wellposedness problems for nonlinear evolution equations

  • A. Grünrock
  • Dissertation Univ. Wuppertal
  • 2002

Global wellposedness for KdV below L2

  • J. Colliander, G. Staffilani, H. Takaoka
  • Math. Res. Lett
  • 1999

Miao: Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations

  • B. Guo, Ch
  • Acta Math. Sinica, Engl. Series
  • 1999

Interaction equations for short and long dispersive waves

  • D. Bekiranov, T. Ogawa, G. Ponce
  • J. Funct. Anal
  • 1998

Velo: On the Cauchy problem for the Zakharov system

  • J. Ginibre, G. Y. Tsutsumi
  • J. Funct. Anal
  • 1997

Weak solvability and wellposedness of a coupled Schrödinger - Korteweg de Vries equation for capillary-gravity wave interactions

  • D. Bekiranov, T. Ogawa, G. Ponce
  • Proc. AMS
  • 1997

Similar Papers

Loading similar papers…