A Numerical Study of Eigenvalues of the Hyperbolic Laplacian for Polyhedra with One Cusp

@article{Grunewald1996ANS,
  title={A Numerical Study of Eigenvalues of the Hyperbolic Laplacian for Polyhedra with One Cusp},
  author={Fritz Grunewald and Wolfgang Huntebrinker},
  journal={Experimental Mathematics},
  year={1996},
  volume={5},
  pages={57-80}
}
Let H3 be three-dimensional hyperbolic space and Γ a group of isometries of H3 that acts discontinuously on H3 and that has a fundamental domain of finite hyperbolic volume. The laplace operator –δ of H3 gives rise to a positive, essentiallv selfadjoint operator on L 2 (Γ\H3). The nature of its discrete spectrum dspec Γ is still not well understood if Γ is not cocompact. This paper contains a report on a numerical study of dspec Γ for various noncocompact groups Γ. Particularly interesting are… CONTINUE READING

Figures, Tables, and Topics from this paper.

Explore Further: Topics Discussed in This Paper

Citations

Publications citing this paper.

THE CUBIC SHIMURA CORRESPONDENCE*

S. J. PATTERSONt
  • 2016
VIEW 1 EXCERPT
CITES BACKGROUND

References

Publications referenced by this paper.
SHOWING 1-4 OF 4 REFERENCES

Mennicke , \ Eisenstein series on three - dimensionalhyperbolic space and imaginary quadratic number elds "

F. Grunewald Elstrodt
  • J . reine angew . Math .

Picard , \ Sur un groupe de transformations des points de l ' espace situ  es du même côt  e d ' unplan "

G. Pini Sartoletto, andG. Gambolati
  • Bull . Soc . Math . France

Similar Papers

Loading similar papers…