A Numerical Method for Kinetic Semiconductor Equations in the Drift-Diffusion Limit

  title={A Numerical Method for Kinetic Semiconductor Equations in the Drift-Diffusion Limit},
  author={Axel Klar},
  journal={SIAM J. Scientific Computing},
An asymptotic-induced scheme for kinetic semiconductor equations with the diiusion scaling is developed. The scheme is based on the asymptotic analysis of the kinetic semiconductor equation. It works uniformly for all ranges of mean free paths. The velocity discretization is done using quadrature points equivalent to a moment expansion method. Numerical results for diierent physical situations are presented. 

From This Paper

Figures, tables, and topics from this paper.


Publications citing this paper.
Showing 1-10 of 27 extracted citations


Publications referenced by this paper.
Showing 1-10 of 17 references

Convergence of moment methods for the semiconductor Boltzmann equation

  • C. Schmeiser, A. Zwirchmayr
  • preprint, TU Wien,
  • 1996
Highly Influential
5 Excerpts

Di usion approximation of the linear semiconductor equation

  • F. Poupaud
  • J. Asympt. Anal., 4
  • 1991
Highly Influential
4 Excerpts

A generalized Legendre polynomial/sparse matrix approach for determining the distribution function in non-polar semiconductors

  • K. Hennacy, N. Goldsman
  • Sol. State Electron., 38
  • 1995
2 Excerpts

A numerical method for computing asymptotic states and outgoing distributions for kinetic linear half space problems

  • F. Golse, A. Klar
  • J. Stat. Phys., 80
  • 1995
1 Excerpt

An expansion method for the Boltzmann transport equation using an adaptive Galerkin procedure

  • C. Ringhofer
  • preprint, Arizona State University,
  • 1995
1 Excerpt

Fully-discrete numerical transfer in di usive regimes

  • S. Jin, D. Levermore
  • TTSP, 22
  • 1993
1 Excerpt

Simulation des Ladungstransportes in elektronischen Bauelementen mit Hilfe der Monte Carlo Methode

  • H. Kosina
  • Dissertation, TU Wien
  • 1992
1 Excerpt

Similar Papers

Loading similar papers…