A Note on the Chevalley – Warning Theorems

@inproceedings{HeathBrown2011ANO,
  title={A Note on the Chevalley – Warning Theorems},
  author={D. R. Heath-Brown},
  year={2011}
}
The most widely known result of Chevalley–Warning type states that if one has a polynomial over a finite field of characteristic p, and the number of variables exceeds the degree, then the number of zeros is a multiple of p. In particular, if the polynomial is homogeneous, there is at least one non-trivial zero. There are a number of related results in the literature. Generally, let Fq be a finite field, and let f = (f1(x), . . . , fr(x)) be an r-tuple of polynomials fi(x1, . . . , xn) ∈ Fq[x1… CONTINUE READING

From This Paper

Topics from this paper.
5 Citations
5 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-5 of 5 references

Bemerkung zur vorstehenden Arbeit von Herrn Chevalley

  • E. Warning
  • Abh. Math. Sem. Univ. Hamburg, 11
  • 1935
Highly Influential
4 Excerpts

Démonstration d’une hypothèse de M

  • C. Chevalley
  • Artin, Abh. Math. Sem. Univ. Hamburg, 11
  • 1935
Highly Influential
4 Excerpts

On a theorem of Ax

  • N. M. Katz
  • Amer. J. Math., 93
  • 1971
2 Excerpts

Zeros of polynomials over finite fields

  • J. Ax
  • Amer. J. Math., 86
  • 1964
1 Excerpt

Number of points of varieties in finite fields

  • S. Lang, A. Weil
  • Amer. J. Math., 76
  • 1954
1 Excerpt

Similar Papers

Loading similar papers…