A Nonlinear Pseudoparabolic Diffusion Equation

@inproceedings{Bhm1985ANP,
  title={A Nonlinear Pseudoparabolic Diffusion Equation},
  author={Michael B{\"o}hm and R. E. Showalter},
  year={1985}
}
  • Michael Böhm, R. E. Showalter
  • Published 1985
  • Mathematics
  • Diffusion in a fissured medium with absorption or partial saturation effects leads to a pseudoparabolic equation nonlinear in both the enthalpy and the permeability. The corresponding initial-boundary value problem is shown to have a solution in various Sobolev–Besov spaces, and sufficient conditions are given for the problem to be well-posed. 

    Create an AI-powered research feed to stay up to date with new papers like this posted to ArXiv

    Citations

    Publications citing this paper.
    SHOWING 1-10 OF 12 CITATIONS

    Nonlinear Pseudoparabolic Equations and Variational Inequalities

    VIEW 4 EXCERPTS
    CITES BACKGROUND
    HIGHLY INFLUENCED

    Mathematical Complexities in Porous Media Flow

    VIEW 2 EXCERPTS
    CITES BACKGROUND & METHODS

    PORO-VISCOELASTIC COMPACTION IN SEDIMENTARY

    VIEW 3 EXCERPTS
    CITES BACKGROUND, METHODS & RESULTS

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 12 REFERENCES

    Two Stefan problems for a degenerate parabolic system

    • R. E. SI-IOWALTR
    • Proc. International Conference on Dynamical Systems, L. Cesari and A. R. Bednarek, eds., Academic Press, New York
    • 1982
    VIEW 1 EXCERPT

    Interpolation Theory

    • H. TRIEBEL
    • Function Spaces, Differential Operators, North-Holland Math. Library, vol. 18, North-Holland, Amsterdam
    • 1978
    VIEW 1 EXCERPT

    SHOWALI:ER, Singular and Degenerate Cauchy Problems

    • R.E.R.W. CARROLL
    • 1976
    VIEW 1 EXCERPT

    Fractionalpowers of operators

    • H. KOMATSU
    • VI, Interpolation of non-negative operators, J. Fac. Sci. Univ. Tokyo, 19
    • 1972

    A second orderfluid of the differential type

    • R. HUIGOL
    • J. Non-linear Mech., 3
    • 1968
    VIEW 1 EXCERPT

    URALT’SEVA, Linear and Quasilinear Elliptic Equations, Nauka, Moscow (1964); English transl

    • N.N.O.A. LADYZnENSKAVA
    • 1968

    Le problbme de Dirichlet pour les bquations elliptiques du second ordre

    • G. STAMPACCHIA
    • Ann. Inst. Fourier (Grenoble), 15
    • 1965